Cargando…
A community effort to assess and improve computerized interpretation of 12-lead resting electrocardiogram
Computerized interpretation of electrocardiogram plays an important role in daily cardiovascular healthcare. However, inaccurate interpretations lead to misdiagnoses and delay proper treatments. In this work, we built a high-quality Chinese 12-lead resting electrocardiogram dataset with 15,357 recor...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724189/ https://www.ncbi.nlm.nih.gov/pubmed/34677739 http://dx.doi.org/10.1007/s11517-021-02420-z |
Sumario: | Computerized interpretation of electrocardiogram plays an important role in daily cardiovascular healthcare. However, inaccurate interpretations lead to misdiagnoses and delay proper treatments. In this work, we built a high-quality Chinese 12-lead resting electrocardiogram dataset with 15,357 records, and called for a community effort to improve the performances of CIE through the China ECG AI Contest 2019. This dataset covers most types of ECG interpretations, including the normal type, 8 common abnormal types, and the other type which includes both uncommon abnormal and noise signals. Based on the Contest, we systematically assessed and analyzed a set of top-performing methods, most of which are deep neural networks, with both their commonalities and characteristics. This study establishes the benchmarks for computerized interpretation of 12-lead resting electrocardiogram and provides insights for the development of new methods. [Figure: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11517-021-02420-z. |
---|