Cargando…
BrainFreeze: Expanding the Capabilities of Neuromorphic Systems Using Mixed-Signal Superconducting Electronics
Superconducting electronics (SCE) is uniquely suited to implement neuromorphic systems. As a result, SCE has the potential to enable a new generation of neuromorphic architectures that can simultaneously provide scalability, programmability, biological fidelity, on-line learning support, efficiency...
Autores principales: | Tschirhart, Paul, Segall, Ken |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724521/ https://www.ncbi.nlm.nih.gov/pubmed/34992515 http://dx.doi.org/10.3389/fnins.2021.750748 |
Ejemplares similares
-
Considerations for Neuromorphic Supercomputing in Semiconducting and Superconducting Optoelectronic Hardware
por: Primavera, Bryce A., et al.
Publicado: (2021) -
Design of a Power Efficient Artificial Neuron Using Superconducting Nanowires
por: Toomey, Emily, et al.
Publicado: (2019) -
Is Neuromorphic MNIST Neuromorphic? Analyzing the Discriminative Power of Neuromorphic Datasets in the Time Domain
por: Iyer, Laxmi R., et al.
Publicado: (2021) -
Neuromorphic Signal Filter for Robot Sensoring
por: García-Sebastián, Luis M., et al.
Publicado: (2022) -
A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems
por: Wang, Zhongqiang, et al.
Publicado: (2015)