Cargando…
Methods for Enrichment and Assignment of N-Acetylglucosamine Modification Sites
O-GlcNAcylation, the addition of a single N-acetylglucosamine residue to serine and threonine residues of cytoplasmic, nuclear, or mitochondrial proteins, is a widespread regulatory posttranslational modification. It is involved in the response to nutritional status and stress, and its dysregulation...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724609/ https://www.ncbi.nlm.nih.gov/pubmed/32938750 http://dx.doi.org/10.1074/mcp.R120.002206 |
Sumario: | O-GlcNAcylation, the addition of a single N-acetylglucosamine residue to serine and threonine residues of cytoplasmic, nuclear, or mitochondrial proteins, is a widespread regulatory posttranslational modification. It is involved in the response to nutritional status and stress, and its dysregulation is associated with diseases ranging from Alzheimer’s to diabetes. Although the modification was first detected over 35 years ago, research into the function of O-GlcNAcylation has accelerated dramatically in the last 10 years owing to the development of new enrichment and mass spectrometry techniques that facilitate its analysis. This article summarizes methods for O-GlcNAc enrichment, key mass spectrometry instrumentation advancements, particularly those that allow modification site localization, and software tools that allow analysis of data from O-GlcNAc-modified peptides. |
---|