Cargando…
Development and validation of the self-management Barriers and Supports Evaluation for working-aged adults with type 1 diabetes mellitus
INTRODUCTION: To optimize type 1 diabetes mellitus self-management, experts recommend a person-centered approach, in which care is tailored to meet people’s needs and preferences. Existing tools for tailoring type 1 diabetes mellitus education and support are limited by narrow focus, lack of strong...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724717/ https://www.ncbi.nlm.nih.gov/pubmed/34980593 http://dx.doi.org/10.1136/bmjdrc-2021-002583 |
Sumario: | INTRODUCTION: To optimize type 1 diabetes mellitus self-management, experts recommend a person-centered approach, in which care is tailored to meet people’s needs and preferences. Existing tools for tailoring type 1 diabetes mellitus education and support are limited by narrow focus, lack of strong association with meaningful outcomes like A1c, or having been developed before widespread use of modern diabetes technology. To facilitate comprehensive, effective tailoring for today’s working-aged adults with type 1 diabetes mellitus, we developed and validated the Barriers and Supports Evaluation (BASES). RESEARCH DESIGN AND METHODS: Participants 25–64 years of age with type 1 diabetes mellitus were recruited from clinics and a population-based registry. Content analysis of semistructured interviews (n=33) yielded a pool of 136 items, further refined to 70 candidate items on a 5-point Likert scale through cognitive interviewing and piloting. To develop and validate the tool, factor analyses were applied to responses to candidate items (n=392). Additional survey data included demographics and the Diabetes-Specific Quality of Life (QOL) Scale-Revised. To evaluate concurrent validity, hemoglobin A1c (HbA1c) values and QOL scores were regressed on domain scores. RESULTS: Factor analyses yielded 5 domains encompassing 30 items: Learning Opportunities, Costs and Insurance, Family and Friends, Coping and Behavioral Skills, and Diabetes Provider Interactions. Models exhibited good to adequate fit (Comparative Fit Index >0.88 and Root Mean Squared Error of Approximation <0.06). All domains demonstrated significant associations with HbA1c and QOL in the expected direction, except Family and Friends. Coping and Behavioral Skills had the strongest associations with both HbA1c and QOL. CONCLUSIONS: The BASES is a valid, comprehensive, person-centered tool that can tailor diabetes support and education to individuals’ needs in a modern practice environment, improving effectiveness and uptake of services. Clinicians could use the tool to uncover patient-specific barriers that limit success in achieving HbA1c goals and optimal QOL. |
---|