Cargando…

Resonantly Enhanced Difference-Frequency Generation in the Core X-ray Absorption of Molecules

[Image: see text] We use real-time time-dependent density functional theory simulations to numerically demonstrate that resonantly enhanced difference-frequency generation (re-DFG) involving intense ultrashort coherent X-ray pulses can selectively excite core states of atoms in molecules. As a model...

Descripción completa

Detalles Bibliográficos
Autor principal: Serrat, Carles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724795/
https://www.ncbi.nlm.nih.gov/pubmed/34910497
http://dx.doi.org/10.1021/acs.jpca.1c06950
Descripción
Sumario:[Image: see text] We use real-time time-dependent density functional theory simulations to numerically demonstrate that resonantly enhanced difference-frequency generation (re-DFG) involving intense ultrashort coherent X-ray pulses can selectively excite core states of atoms in molecules. As a model case, we evaluate the spectral selectivity of re-DFG excitation of the oxygen K-edge by illumination of a single gas-phase water molecule with two-color X-ray pulses of different photon energies and durations. The re-DFG excitation is further probed by a small delayed pulse with central photon energy resonant with the oxygen K-edge peak absorption line. Based on these results, we anticipate that highly selective excitation by re-DFG X-ray nonlinear processes might be achieved in more complex molecular systems and bulk materials by using highly penetrating two-color hard X-ray pulses, with extensive applications.