Cargando…

Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells

Transition metal oxides (TMOs) are promising materials to develop selective contacts on high-efficiency crystalline silicon solar cells. Nevertheless, the standard deposition technique used for TMOs is thermal evaporation, which could add potential scalability problems to industrial photovoltaic fab...

Descripción completa

Detalles Bibliográficos
Autores principales: Costals, Eloi Ros, Masmitjà, Gerard, Almache, Estefania, Pusay, Benjamin, Tiwari, Kunal, Saucedo, Edgardo, Raj, C. Justin, Kim, Byung Chul, Puigdollers, Joaquim, Martin, Isidro, Voz, Cristobal, Ortega, Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724908/
https://www.ncbi.nlm.nih.gov/pubmed/35128416
http://dx.doi.org/10.1039/d1ma00812a
_version_ 1784626004230144000
author Costals, Eloi Ros
Masmitjà, Gerard
Almache, Estefania
Pusay, Benjamin
Tiwari, Kunal
Saucedo, Edgardo
Raj, C. Justin
Kim, Byung Chul
Puigdollers, Joaquim
Martin, Isidro
Voz, Cristobal
Ortega, Pablo
author_facet Costals, Eloi Ros
Masmitjà, Gerard
Almache, Estefania
Pusay, Benjamin
Tiwari, Kunal
Saucedo, Edgardo
Raj, C. Justin
Kim, Byung Chul
Puigdollers, Joaquim
Martin, Isidro
Voz, Cristobal
Ortega, Pablo
author_sort Costals, Eloi Ros
collection PubMed
description Transition metal oxides (TMOs) are promising materials to develop selective contacts on high-efficiency crystalline silicon solar cells. Nevertheless, the standard deposition technique used for TMOs is thermal evaporation, which could add potential scalability problems to industrial photovoltaic fabrication processes. As an alternative, atomic layer deposition (ALD) is a thin film deposition technique already used for dielectric deposition in the semiconductor device industry that has a straightforward up scalable design. This work reports the results of vanadium oxide (V(2)O(5)) films deposited by ALD acting as a hole-selective contact for n-type crystalline silicon (c-Si) solar cell frontal transparent contact without the additional PECVD passivating layer. A reasonable specific contact resistance of 100 mΩ cm(2) was measured by the transfer length method. In addition, measurements suggest the presence of an inversion layer at the c-Si/V(2)O(5) interface with a sheet resistance of 15 kΩ sq(−1). The strong band bending induced at the c-Si surface was confirmed through capacitance–voltage measurements with a built-in voltage value of 683 mV. Besides low contact resistance, vanadium oxide films provide excellent surface passivation with effective lifetime values of up to 800 μs. Finally, proof-of-concept both-side contacted solar cells exhibit efficiencies beyond 18%, shedding light on the possibilities of TMOs deposited by the atomic layer deposition technique.
format Online
Article
Text
id pubmed-8724908
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-87249082022-02-04 Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells Costals, Eloi Ros Masmitjà, Gerard Almache, Estefania Pusay, Benjamin Tiwari, Kunal Saucedo, Edgardo Raj, C. Justin Kim, Byung Chul Puigdollers, Joaquim Martin, Isidro Voz, Cristobal Ortega, Pablo Mater Adv Chemistry Transition metal oxides (TMOs) are promising materials to develop selective contacts on high-efficiency crystalline silicon solar cells. Nevertheless, the standard deposition technique used for TMOs is thermal evaporation, which could add potential scalability problems to industrial photovoltaic fabrication processes. As an alternative, atomic layer deposition (ALD) is a thin film deposition technique already used for dielectric deposition in the semiconductor device industry that has a straightforward up scalable design. This work reports the results of vanadium oxide (V(2)O(5)) films deposited by ALD acting as a hole-selective contact for n-type crystalline silicon (c-Si) solar cell frontal transparent contact without the additional PECVD passivating layer. A reasonable specific contact resistance of 100 mΩ cm(2) was measured by the transfer length method. In addition, measurements suggest the presence of an inversion layer at the c-Si/V(2)O(5) interface with a sheet resistance of 15 kΩ sq(−1). The strong band bending induced at the c-Si surface was confirmed through capacitance–voltage measurements with a built-in voltage value of 683 mV. Besides low contact resistance, vanadium oxide films provide excellent surface passivation with effective lifetime values of up to 800 μs. Finally, proof-of-concept both-side contacted solar cells exhibit efficiencies beyond 18%, shedding light on the possibilities of TMOs deposited by the atomic layer deposition technique. RSC 2021-10-12 /pmc/articles/PMC8724908/ /pubmed/35128416 http://dx.doi.org/10.1039/d1ma00812a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Costals, Eloi Ros
Masmitjà, Gerard
Almache, Estefania
Pusay, Benjamin
Tiwari, Kunal
Saucedo, Edgardo
Raj, C. Justin
Kim, Byung Chul
Puigdollers, Joaquim
Martin, Isidro
Voz, Cristobal
Ortega, Pablo
Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells
title Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells
title_full Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells
title_fullStr Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells
title_full_unstemmed Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells
title_short Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells
title_sort atomic layer deposition of vanadium oxide films for crystalline silicon solar cells
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724908/
https://www.ncbi.nlm.nih.gov/pubmed/35128416
http://dx.doi.org/10.1039/d1ma00812a
work_keys_str_mv AT costalseloiros atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT masmitjagerard atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT almacheestefania atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT pusaybenjamin atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT tiwarikunal atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT saucedoedgardo atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT rajcjustin atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT kimbyungchul atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT puigdollersjoaquim atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT martinisidro atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT vozcristobal atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells
AT ortegapablo atomiclayerdepositionofvanadiumoxidefilmsforcrystallinesiliconsolarcells