Cargando…

Implications of AlphaFold2 for crystallographic phasing by molecular replacement

The AlphaFold2 results in the 14th edition of Critical Assessment of Structure Prediction (CASP14) showed that accurate (low root-mean-square deviation) in silico models of protein structure domains are on the horizon, whether or not the protein is related to known structures through high-coverage s...

Descripción completa

Detalles Bibliográficos
Autores principales: McCoy, Airlie J., Sammito, Massimo D., Read, Randy J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8725160/
https://www.ncbi.nlm.nih.gov/pubmed/34981757
http://dx.doi.org/10.1107/S2059798321012122
Descripción
Sumario:The AlphaFold2 results in the 14th edition of Critical Assessment of Structure Prediction (CASP14) showed that accurate (low root-mean-square deviation) in silico models of protein structure domains are on the horizon, whether or not the protein is related to known structures through high-coverage sequence similarity. As highly accurate models become available, generated by harnessing the power of correlated mutations and deep learning, one of the aspects of structural biology to be impacted will be methods of phasing in crystallography. Here, the data from CASP14 are used to explore the prospects for changes in phasing methods, and in particular to explore the prospects for molecular-replacement phasing using in silico models.