Cargando…
B-factor accuracy in protein crystal structures
The accuracy of B factors in protein crystal structures has been determined by comparing the same atoms in numerous, independent crystal structures of Gallus gallus lysozyme. Both B-factor absolute differences and normal probability plots indicate that the estimated B-factor errors are quite large,...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8725162/ https://www.ncbi.nlm.nih.gov/pubmed/34981763 http://dx.doi.org/10.1107/S2059798321011736 |
Sumario: | The accuracy of B factors in protein crystal structures has been determined by comparing the same atoms in numerous, independent crystal structures of Gallus gallus lysozyme. Both B-factor absolute differences and normal probability plots indicate that the estimated B-factor errors are quite large, close to 9 Å(2) in ambient-temperature structures and to 6 Å(2) in low-temperature structures, and surprisingly are comparable to values estimated two decades ago. It is well known that B factors are not due to local movements only but reflect several, additional factors from crystal defects, large-scale disorder, diffraction data quality etc. It therefore remains essential to normalize B factors when comparing different crystal structures, although it has clearly been shown that they provide useful information about protein dynamics. Improved, quantitative analyses of raw B factors require novel experimental and computational tools that are able to disaggregate local movements from other features and properties that affect B factors. |
---|