Cargando…
Cost-sensitive learning strategies for high-dimensional and imbalanced data: a comparative study
High dimensionality and class imbalance have been largely recognized as important issues in machine learning. A vast amount of literature has indeed investigated suitable approaches to address the multiple challenges that arise when dealing with high-dimensional feature spaces (where each problem in...
Autores principales: | Pes, Barbara, Lai, Giuseppina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8725666/ https://www.ncbi.nlm.nih.gov/pubmed/35036539 http://dx.doi.org/10.7717/peerj-cs.832 |
Ejemplares similares
-
Comparison of machine learning techniques to handle imbalanced COVID-19 CBC datasets
por: Dorn, Marcio, et al.
Publicado: (2021) -
A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach
por: Alhudhaif, Adi
Publicado: (2021) -
Feature screening for survival trait with application to TCGA high-dimensional genomic data
por: Wang, Jie-Huei, et al.
Publicado: (2022) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data
por: Tabares-Soto, Reinel, et al.
Publicado: (2020)