Cargando…
Adversarial example defense based on image reconstruction
The rapid development of deep neural networks (DNN) has promoted the widespread application of image recognition, natural language processing, and autonomous driving. However, DNN is vulnerable to adversarial examples, such as an input sample with imperceptible perturbation which can easily invalida...
Autores principales: | Zhang, Yu(AUST), Xu, Huan, Pei, Chengfei, Yang, Gaoming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8725667/ https://www.ncbi.nlm.nih.gov/pubmed/35036533 http://dx.doi.org/10.7717/peerj-cs.811 |
Ejemplares similares
-
Generating adversarial examples without specifying a target model
por: Yang, Gaoming, et al.
Publicado: (2021) -
Enhancing the robustness of vision transformer defense against adversarial attacks based on squeeze-and-excitation module
por: Chang, YouKang, et al.
Publicado: (2023) -
Person image generation through graph-based and appearance-decomposed generative adversarial network
por: He, Yuling, et al.
Publicado: (2021) -
Image classification adversarial attack with improved resizing transformation and ensemble models
por: Li, Chenwei, et al.
Publicado: (2023) -
Improving Adversarial Robustness via Attention and Adversarial Logit Pairing
por: Li, Xingjian, et al.
Publicado: (2022)