Cargando…
Comparative analysis of machine learning approaches to analyze and predict the COVID-19 outbreak
BACKGROUND: Forecasting the time of forthcoming pandemic reduces the impact of diseases by taking precautionary steps such as public health messaging and raising the consciousness of doctors. With the continuous and rapid increase in the cumulative incidence of COVID-19, statistical and outbreak pre...
Autores principales: | Naeem, Muhammad, Yu, Jian, Aamir, Muhammad, Khan, Sajjad Ahmad, Adeleye, Olayinka, Khan, Zardad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8725668/ https://www.ncbi.nlm.nih.gov/pubmed/35036527 http://dx.doi.org/10.7717/peerj-cs.746 |
Ejemplares similares
-
Comparative analysis of machine learning approaches for predicting respiratory virus infection and symptom severity
por: Işık, Yunus Emre, et al.
Publicado: (2023) -
Early survey with bibliometric analysis on machine learning approaches in controlling COVID-19 outbreaks
por: Chiroma, Haruna, et al.
Publicado: (2020) -
Network subgraph-based approach for analyzing and comparing molecular networks
por: Huang, Chien-Hung, et al.
Publicado: (2022) -
A systematic hybrid machine learning approach for stress prediction
por: Ding, Cheng, et al.
Publicado: (2023) -
TransPrise: a novel machine learning approach for eukaryotic promoter prediction
por: Pachganov, Stepan, et al.
Publicado: (2019)