Cargando…

Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions

Here we present a method to extract thermodynamic quantities for nanoparticle dispersions in solvents. The method is based on the study of tomograms obtained from cryogenic electron tomography (cryoET). The approach is demonstrated for gold nanoparticles (diameter < 5 nm). Tomograms are reconstru...

Descripción completa

Detalles Bibliográficos
Autores principales: Ong, Quy, Mao, Ting, Iranpour Anaraki, Neda, Richter, Łukasz, Malinverni, Carla, Xu, Xufeng, Olgiati, Francesca, Silva, Paulo Henrique Jacob, Murello, Anna, Neels, Antonia, Demurtas, Davide, Shimizu, Seishi, Stellacci, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8725794/
https://www.ncbi.nlm.nih.gov/pubmed/34739025
http://dx.doi.org/10.1039/d1mh01461g
_version_ 1784626184144814080
author Ong, Quy
Mao, Ting
Iranpour Anaraki, Neda
Richter, Łukasz
Malinverni, Carla
Xu, Xufeng
Olgiati, Francesca
Silva, Paulo Henrique Jacob
Murello, Anna
Neels, Antonia
Demurtas, Davide
Shimizu, Seishi
Stellacci, Francesco
author_facet Ong, Quy
Mao, Ting
Iranpour Anaraki, Neda
Richter, Łukasz
Malinverni, Carla
Xu, Xufeng
Olgiati, Francesca
Silva, Paulo Henrique Jacob
Murello, Anna
Neels, Antonia
Demurtas, Davide
Shimizu, Seishi
Stellacci, Francesco
author_sort Ong, Quy
collection PubMed
description Here we present a method to extract thermodynamic quantities for nanoparticle dispersions in solvents. The method is based on the study of tomograms obtained from cryogenic electron tomography (cryoET). The approach is demonstrated for gold nanoparticles (diameter < 5 nm). Tomograms are reconstructed from tilt-series 2D images. Once the three-dimensional (3D) coordinates for the centres of mass of all of the particles in the sample are determined, we calculate the pair distribution function g(r) and the potential of mean force U(r) without any assumption. Importantly, we show that further quantitative information from 3D tomograms is readily available as the spatial fluctuation in the particles’ position can be efficiently determined. This in turn allows for the prompt derivation of the Kirkwood–Buff integrals with all their associated quantities such as the second virial coefficient. Finally, the structure factor and the agglomeration states of the particles are evaluated directly. These thermodynamic quantities provide key insights into the dispersion properties of the particles. The method works well both for dispersed systems containing isolated particles and for systems with varying degrees of agglomerations.
format Online
Article
Text
id pubmed-8725794
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-87257942022-02-04 Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions Ong, Quy Mao, Ting Iranpour Anaraki, Neda Richter, Łukasz Malinverni, Carla Xu, Xufeng Olgiati, Francesca Silva, Paulo Henrique Jacob Murello, Anna Neels, Antonia Demurtas, Davide Shimizu, Seishi Stellacci, Francesco Mater Horiz Chemistry Here we present a method to extract thermodynamic quantities for nanoparticle dispersions in solvents. The method is based on the study of tomograms obtained from cryogenic electron tomography (cryoET). The approach is demonstrated for gold nanoparticles (diameter < 5 nm). Tomograms are reconstructed from tilt-series 2D images. Once the three-dimensional (3D) coordinates for the centres of mass of all of the particles in the sample are determined, we calculate the pair distribution function g(r) and the potential of mean force U(r) without any assumption. Importantly, we show that further quantitative information from 3D tomograms is readily available as the spatial fluctuation in the particles’ position can be efficiently determined. This in turn allows for the prompt derivation of the Kirkwood–Buff integrals with all their associated quantities such as the second virial coefficient. Finally, the structure factor and the agglomeration states of the particles are evaluated directly. These thermodynamic quantities provide key insights into the dispersion properties of the particles. The method works well both for dispersed systems containing isolated particles and for systems with varying degrees of agglomerations. The Royal Society of Chemistry 2021-11-05 /pmc/articles/PMC8725794/ /pubmed/34739025 http://dx.doi.org/10.1039/d1mh01461g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Ong, Quy
Mao, Ting
Iranpour Anaraki, Neda
Richter, Łukasz
Malinverni, Carla
Xu, Xufeng
Olgiati, Francesca
Silva, Paulo Henrique Jacob
Murello, Anna
Neels, Antonia
Demurtas, Davide
Shimizu, Seishi
Stellacci, Francesco
Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions
title Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions
title_full Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions
title_fullStr Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions
title_full_unstemmed Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions
title_short Cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions
title_sort cryogenic electron tomography to determine thermodynamic quantities for nanoparticle dispersions
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8725794/
https://www.ncbi.nlm.nih.gov/pubmed/34739025
http://dx.doi.org/10.1039/d1mh01461g
work_keys_str_mv AT ongquy cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT maoting cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT iranpouranarakineda cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT richterłukasz cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT malinvernicarla cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT xuxufeng cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT olgiatifrancesca cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT silvapaulohenriquejacob cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT murelloanna cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT neelsantonia cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT demurtasdavide cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT shimizuseishi cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions
AT stellaccifrancesco cryogenicelectrontomographytodeterminethermodynamicquantitiesfornanoparticledispersions