Cargando…

Cucurbitacin B regulates lung cancer cell proliferation and apoptosis via inhibiting the IL-6/STAT3 pathway through the lncRNA XIST/miR-let-7c axis

CONTEXT: Lung cancer, the most common type of cancer, has a high mortality rate. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae plants, has antitumor effects. OBJECTIVE: We investigated the role of CuB on lung cancer and its potential mechanisms. MATERIALS AND METHODS: A549 ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jian-Hua, Li, Chen, Cao, Liang, Zhang, Chang-Hong, Zhang, Zhi-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8725843/
https://www.ncbi.nlm.nih.gov/pubmed/34967707
http://dx.doi.org/10.1080/13880209.2021.2016866
Descripción
Sumario:CONTEXT: Lung cancer, the most common type of cancer, has a high mortality rate. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae plants, has antitumor effects. OBJECTIVE: We investigated the role of CuB on lung cancer and its potential mechanisms. MATERIALS AND METHODS: A549 cells were treated with 0.1, 0.3, 0.6, and 0.9 μM CuB for 12, 24, and 48 h or untreated. Gene and protein levels were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Enzyme-linked immunosorbent assay (ELISA) detected inflammatory factors levels (TNF-α and IL-10). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and colony formation assays measured cell viability, apoptosis, and proliferation. The interaction between miR-let-7c and long non-coding RNA X inactive-specific transcript (XIST) or interleukin-6 (IL-6) was verified by dual-luciferase reporter assays. RESULTS: CuB treatment inhibited the proliferation of lung cancer cells and promoted cell apoptosis, and increased the expression of Bax and cleaved caspase3, decreased cyclin B1 and Bcl-2 expression. CuB suppressed XIST and IL-6 expression, and enhanced miR-let-7c expression. XIST silencing enhanced the inhibitory effect of CuB on cell proliferation and the promotion effect on apoptosis via upregulating miR-let-7c. Moreover, XIST targeted miR-let-7c to activate the IL-6/STAT axis. MiR-let-7c overexpression enhanced the regulatory effect of CuB on proliferation and apoptosis via suppressing the IL-6/STAT3 pathway. DISCUSSION AND CONCLUSION: CuB regulated cell proliferation and apoptosis by inhibiting the XIST/miR-let-7c/IL-6/STAT3 axis in lung cancer. These findings indicate CuB may have the possibility of clinical application in lung cancer treatment.