Cargando…

CREG1 promotes lysosomal biogenesis and function

CREG1 is a small glycoprotein which has been proposed as a transcription repressor, a secretory ligand, a lysosomal, or a mitochondrial protein. This is largely because of lack of antibodies for immunolocalization validated through gain- and loss-of-function studies. In the present study, we demonst...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jie, Qi, Yanmei, Chao, Joshua, Sathuvalli, Pranav, Y. Lee, Leonard, Li, Shaohua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8726608/
https://www.ncbi.nlm.nih.gov/pubmed/33966596
http://dx.doi.org/10.1080/15548627.2021.1909997
Descripción
Sumario:CREG1 is a small glycoprotein which has been proposed as a transcription repressor, a secretory ligand, a lysosomal, or a mitochondrial protein. This is largely because of lack of antibodies for immunolocalization validated through gain- and loss-of-function studies. In the present study, we demonstrate, using antibodies validated for immunofluorescence microscopy, that CREG1 is mainly localized to the endosomal-lysosomal compartment. Gain- and loss-of-function analyses reveal an important role for CREG1 in both macropinocytosis and clathrin-dependent endocytosis. CREG1 also promotes acidification of the endosomal-lysosomal compartment and increases lysosomal biogenesis. Functionally, overexpression of CREG1 enhances macroautophagy/autophagy and lysosome-mediated degradation, whereas knockdown or knockout of CREG1 has opposite effects. The function of CREG1 in lysosomal biogenesis is likely attributable to enhanced endocytic trafficking. Our results demonstrate that CREG1 is an endosomal-lysosomal protein implicated in endocytic trafficking and lysosomal biogenesis. Abbreviations: AIFM1/AIF: apoptosis inducing factor mitochondria associated 1; AO: acridine orange; ATP6V1H: ATPase H+ transporting V1 subunit H; CALR: calreticulin; CREG: cellular repressor of E1A stimulated genes; CTSC: cathepsin C; CTSD: cathepsin D; EBAG9/RCAS1: estrogen receptor binding site associated antigen 9; EIPA: 5-(N-ethyl-N-isopropyl)amiloride; ER: endoplasmic reticulum; GFP: green fluorescent protein; HEXA: hexosaminidase subunit alpha; IGF2R: insulin like growth factor 2 receptor; LAMP1: lysosomal associated membrane protein 1; M6PR: mannose-6-phosphate receptor, cation dependent; MAPK1/ERK2: mitogen-activated protein kinase 1; MTORC1: mechanistic target of rapamycin kinase complex 1; PDIA2: protein disulfide isomerase family A member 2; SQSTM1/p62: sequestosome 1; TF: transferrin; TFEB: transcription factor EB