Cargando…
Multipath Cross Graph Convolution for Knowledge Representation Learning
In the past, most of the entity prediction methods based on embedding lacked the training of local core relationships, resulting in a deficiency in the end-to-end training. Aiming at this problem, we propose an end-to-end knowledge graph embedding representation method. It involves local graph convo...
Autores principales: | Tian, Luogeng, Yang, Bailong, Yin, Xinli, Kang, Kai, Wu, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727103/ https://www.ncbi.nlm.nih.gov/pubmed/34992642 http://dx.doi.org/10.1155/2021/2547905 |
Ejemplares similares
-
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Using convolutional neural networks to detect GNSS multipath
por: Guillard, Anthony, et al.
Publicado: (2023) -
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
por: Berrendorf, Max, et al.
Publicado: (2020) -
Using graph convolutional neural networks to learn a representation for glycans
por: Burkholz, Rebekka, et al.
Publicado: (2021) -
Neuro-symbolic representation learning on biological knowledge graphs
por: Alshahrani, Mona, et al.
Publicado: (2017)