Cargando…
Automatic Detection of High-Frequency Oscillations Based on an End-to-End Bi-Branch Neural Network and Clinical Cross-Validation
Accurate identification of high-frequency oscillation (HFO) is an important prerequisite for precise localization of epileptic foci and good prognosis of drug-refractory epilepsy. Exploring a high-performance automatic detection method for HFOs can effectively help clinicians reduce the error rate a...
Autores principales: | Liu, Zimo, Wei, Penghu, Wang, Yiping, Yang, Yanfeng, Dai, Yang, Cao, Gongpeng, Kang, Guixia, Shan, Yongzhi, Liu, Da, Xie, Yongzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727108/ https://www.ncbi.nlm.nih.gov/pubmed/34992650 http://dx.doi.org/10.1155/2021/7532241 |
Ejemplares similares
-
Computer-Aided Intracranial EEG Signal Identification Method Based on a Multi-Branch Deep Learning Fusion Model and Clinical Validation
por: Wang, Yiping, et al.
Publicado: (2021) -
Automatic Localization of Seizure Onset Zone Based on Multi-Epileptogenic Biomarkers Analysis of Single-Contact from Interictal SEEG
por: Wang, Yiping, et al.
Publicado: (2022) -
An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection
por: Toma, Tabassum Islam, et al.
Publicado: (2023) -
Answering medical questions in Chinese using automatically mined knowledge and deep neural networks: an end-to-end solution
por: Zhang, Li, et al.
Publicado: (2022) -
Automatic Detection of High-Frequency Oscillations With Neuromorphic Spiking Neural Networks
por: Burelo, Karla, et al.
Publicado: (2022)