Cargando…
A Feature Selection Algorithm Integrating Maximum Classification Information and Minimum Interaction Feature Dependency Information
Feature selection is the key step in the analysis of high-dimensional small sample data. The core of feature selection is to analyse and quantify the correlation between features and class labels and the redundancy between features. However, most of the existing feature selection algorithms only con...
Autor principal: | Zhang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727115/ https://www.ncbi.nlm.nih.gov/pubmed/34992644 http://dx.doi.org/10.1155/2021/3569632 |
Ejemplares similares
-
The Hybrid Feature Selection Algorithm Based on Maximum Minimum Backward Selection Search Strategy for Liver Tissue Pathological Image Classification
por: Liu, Huiling, et al.
Publicado: (2016) -
A Maximum-Information-Minimum-Redundancy-Based Feature Fusion Framework for Ship Classification in Moderate-Resolution SAR Image
por: Zhou, Gaoyu, et al.
Publicado: (2021) -
PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection
por: Wang, Jing, et al.
Publicado: (2013) -
Information Theory-Based Feature Selection: Minimum Distribution Similarity with Removed Redundancy
por: Zhang, Yu, et al.
Publicado: (2020) -
Efficient Algorithms for Searching the Minimum Information Partition in Integrated Information Theory
por: Kitazono, Jun, et al.
Publicado: (2018)