Cargando…

Computational Prediction of Intrinsically Disordered Proteins Based on Protein Sequences and Convolutional Neural Networks

Intrinsically disordered proteins (IDPs) possess at least one region that lacks a single stable structure in vivo, which makes them play an important role in a variety of biological functions. We propose a prediction method for IDPs based on convolutional neural networks (CNNs) and feature selection...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Hao, Yang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727116/
https://www.ncbi.nlm.nih.gov/pubmed/34992646
http://dx.doi.org/10.1155/2021/4455604
Descripción
Sumario:Intrinsically disordered proteins (IDPs) possess at least one region that lacks a single stable structure in vivo, which makes them play an important role in a variety of biological functions. We propose a prediction method for IDPs based on convolutional neural networks (CNNs) and feature selection. The combination of sequence and evolutionary properties is used to describe the differences between disordered and ordered regions. Especially, to highlight the correlation between the target residue and adjacent residues, multiple windows are selected to preprocess the protein sequence through the selected properties. The shorter windows reflect the characteristics of the central residue, and the longer windows reflect the characteristics of the surroundings around the central residue. Moreover, to highlight the specificity of sequence and evolutionary properties, they are preprocessed, respectively. After that, the preprocessed properties are combined into feature matrices as the input of the constructed CNN. Our method is training as well as testing based on the DisProt database. The simulation results show that the proposed method can predict IDPs effectively, and the performance is competitive in comparison with IsUnstruct and ESpritz.