Cargando…

Alzheimer's Disease Classification Based on Image Transformation and Features Fusion

It has become an inevitable trend for medical personnel to analyze and diagnose Alzheimer's disease (AD) in different stages by combining functional magnetic resonance imaging (fMRI) and artificial intelligence technologies such as deep learning in the future. In this paper, a classification me...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Hongfei, Wang, Yu, Duan, Yifan, Xiao, Hongbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727120/
https://www.ncbi.nlm.nih.gov/pubmed/34992676
http://dx.doi.org/10.1155/2021/9624269
Descripción
Sumario:It has become an inevitable trend for medical personnel to analyze and diagnose Alzheimer's disease (AD) in different stages by combining functional magnetic resonance imaging (fMRI) and artificial intelligence technologies such as deep learning in the future. In this paper, a classification method was proposed for AD based on two different transformation images of fMRI and improved the 3DPCANet model and canonical correlation analysis (CCA). The main ideas include that, firstly, fMRI images were preprocessed, and subsequently, mean regional homogeneity (mReHo) and mean amplitude of low-frequency amplitude (mALFF) transformation were performed for the preprocessed images. Then, mReHo and mALFF images were extracted features using the improved 3DPCANet, and these two kinds of the extracted features were fused by CCA. Finally, the support vector machine (SVM) was used to classify AD patients with different stages. Experimental results showed that the proposed approach was robust and effective. Classification accuracy for significant memory concern (SMC) vs. mild cognitive impairment (MCI), normal control (NC) vs. AD, and NC vs. SMC, respectively, reached 95.00%, 92.00%, and 91.30%, which adequately proved the feasibility and effectiveness of the proposed method.