Cargando…
Downregulated Expression of miRNA-130a-5p Aggravates Hepatoma Progression via Targeting PTP4A2
BACKGROUND: Hepatoma is a leading cause of death worldwide, with high metastasis and recurrence rates. The aberrant expression of miRNA-130a-5p is involved in the development and progression of various cancers. However, there are no studies investigating the role of miRNA-130a-5p in hepatoma. The pr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727122/ https://www.ncbi.nlm.nih.gov/pubmed/34992672 http://dx.doi.org/10.1155/2021/4439505 |
Sumario: | BACKGROUND: Hepatoma is a leading cause of death worldwide, with high metastasis and recurrence rates. The aberrant expression of miRNA-130a-5p is involved in the development and progression of various cancers. However, there are no studies investigating the role of miRNA-130a-5p in hepatoma. The present study is aimed at clarifying the functional role of miRNA-130a-5p in hepatoma progression. METHODS: The expression levels of miRNA-130a-5p in hepatoma tissues and cell lines were detected by qRT-PCR assays. Bioinformatic analysis, gain-/loss-of-function experiments, and luciferase activity assays were conducted to verify whether miRNA-130a-5p is targeted by protein tyrosine phosphatase 4A2 (PTP4A2). The functions of miRNA-130a-5p and PTP4A2 in hepatoma were determined by cell proliferation assays. RESULTS: The expression of miRNA-130a-5p was downregulated in hepatoma tissues and was related to poor prognosis. However, the expression level of PTP4A2 was contradictory to that of miRNA-130a-5p, and PTP4A2 upregulation could aggravate hepatoma progression. The ectopic overexpression of PTP4A2 promoted hepatoma cell proliferation in vitro, which could be reversed by miRNA-130a-5p. CONCLUSIONS: Our study implies that miRNA-130a-5p, which is downregulated in hepatoma tissues, can suppress hepatoma cell proliferation via targeting PTP4A2. |
---|