Cargando…

Constant stress arches and their design space

It is generally accepted that an optimal arch has a funicular (moment-less) form and least weight. However, the feature of least weight restricts the design options and raises the question of durability of such structures. This study, building on the analytical form-finding approach presented in Lew...

Descripción completa

Detalles Bibliográficos
Autor principal: Lewis, Wanda J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727150/
https://www.ncbi.nlm.nih.gov/pubmed/35153608
http://dx.doi.org/10.1098/rspa.2021.0428
Descripción
Sumario:It is generally accepted that an optimal arch has a funicular (moment-less) form and least weight. However, the feature of least weight restricts the design options and raises the question of durability of such structures. This study, building on the analytical form-finding approach presented in Lewis (2016. Proc. R. Soc. A 472, 20160019. (doi:10.1098/rspa.2016.0019)), proposes constant axial stress as a design criterion for smooth, two-pin arches that are moment-less under permanent (statistically prevalent) load. This approach ensures that no part of the structure becomes over-stressed under variable load (wind, snow and/or moving objects), relative to its other parts—a phenomenon observed in natural structures, such as trees, bones, shells. The theory considers a general case of an asymmetric arch, deriving the equation of its centre-line profile, horizontal reactions and varying cross-section area. The analysis of symmetric arches follows, and includes a solution for structures of least weight by supplying an equation for a volume-minimizing, span/rise ratio. The paper proposes a new concept, that of a design space controlled by two non-dimensional input parameters; their theoretical and practical limits define the existence of constant axial stress arches. It is shown that, for stand-alone arches, the design space reduces to a constraint relationship between constant stress and span/rise ratio.