Cargando…
Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears
The evaluation of bone marrow morphology by experienced hematopathologists is essential in the diagnosis of acute myeloid leukemia (AML); however, it suffers from a lack of standardization and inter-observer variability. Deep learning (DL) can process medical image data and provides data-driven clas...
Autores principales: | Eckardt, Jan-Niklas, Middeke, Jan Moritz, Riechert, Sebastian, Schmittmann, Tim, Sulaiman, Anas Shekh, Kramer, Michael, Sockel, Katja, Kroschinsky, Frank, Schuler, Ulrich, Schetelig, Johannes, Röllig, Christoph, Thiede, Christian, Wendt, Karsten, Bornhäuser, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727290/ https://www.ncbi.nlm.nih.gov/pubmed/34497326 http://dx.doi.org/10.1038/s41375-021-01408-w |
Ejemplares similares
-
Deep learning identifies Acute Promyelocytic Leukemia in bone marrow smears
por: Eckardt, Jan-Niklas, et al.
Publicado: (2022) -
Long-Term Mixed Chimerism After Ex Vivo/In Vivo T Cell-Depleted Allogeneic Hematopoietic Cell Transplantation in Patients With Myeloid Neoplasms
por: Ruhnke, Leo, et al.
Publicado: (2021) -
Reinforcement Learning for Precision Oncology
por: Eckardt, Jan-Niklas, et al.
Publicado: (2021) -
Semi-supervised learning in cancer diagnostics
por: Eckardt, Jan-Niklas, et al.
Publicado: (2022) -
Allogeneic Stem Cell Transplantation with Sequential Melphalan-Based Conditioning in AML: Residual Morphological Blast Count Determines the Risk of Relapse
por: Sockel, Katja, et al.
Publicado: (2022)