Cargando…
Use of superordinate labels yields more robust and human-like visual representations in convolutional neural networks
Human visual recognition is outstandingly robust. People can recognize thousands of object classes in the blink of an eye (50–200 ms) even when the objects vary in position, scale, viewpoint, and illumination. What aspects of human category learning facilitate the extraction of invariant visual feat...
Autores principales: | Ahn, Seoyoung, Zelinsky, Gregory J., Lupyan, Gary |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727315/ https://www.ncbi.nlm.nih.gov/pubmed/34967860 http://dx.doi.org/10.1167/jov.21.13.13 |
Ejemplares similares
-
In the Absence of Animacy: Superordinate Category Structure Affects Subordinate Label Verification
por: Ilic, Olivera, et al.
Publicado: (2013) -
Correction: In the Absence of Animacy: Superordinate Category Structure Affects Subordinate Label Verification
Publicado: (2014) -
A brain-inspired object-based attention network for multiobject recognition and visual reasoning
por: Adeli, Hossein, et al.
Publicado: (2023) -
Superordinate Categorization Based on the Perceptual Organization of Parts
por: Tiedemann, Henning, et al.
Publicado: (2022) -
The characterization of actions at the superordinate, basic and subordinate level
por: Zhuang, Tonghe, et al.
Publicado: (2021)