Cargando…
A low resource 3D U-Net based deep learning model for medical image analysis
The success of deep learning, a subfield of Artificial Intelligence technologies in the field of image analysis and computer can be leveraged for building better decision support systems for clinical radiological settings. Detecting and segmenting tumorous tissues in brain region using deep learning...
Autores principales: | Chetty, Girija, Yamin, Mohammad, White, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727483/ https://www.ncbi.nlm.nih.gov/pubmed/35005425 http://dx.doi.org/10.1007/s41870-021-00850-4 |
Ejemplares similares
-
A framework for vehicle quality evaluation based on interpretable machine learning
por: Alwadi, Mohammad, et al.
Publicado: (2022) -
DCTR U-Net: automatic segmentation algorithm for medical images of nasopharyngeal cancer in the context of deep learning
por: Zeng, Yan, et al.
Publicado: (2023) -
MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation
por: Su, Run, et al.
Publicado: (2021) -
3D bi-directional transformer U-Net for medical image segmentation
por: Fu, Xiyao, et al.
Publicado: (2023) -
Automatic segmentation of rectal tumor on diffusion‐weighted images by deep learning with U‐Net
por: Zhu, Hai‐Tao, et al.
Publicado: (2021)