Cargando…
Targeted Deletion of the First Intron of the Wx(b) Allele via CRISPR/Cas9 Significantly Increases Grain Amylose Content in Rice
BACKGROUND: The rice Waxy (Wx) gene plays a major role in seed amylose synthesis and consequently controls grain amylose content. Wx gene expression is highly regulated at the post-transcriptional level. In particular, the GT/TT polymorphism at the 5′splicing site of its 1st intron greatly affects t...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727654/ https://www.ncbi.nlm.nih.gov/pubmed/34982277 http://dx.doi.org/10.1186/s12284-021-00548-y |
_version_ | 1784626565743640576 |
---|---|
author | Liu, Xingdan Ding, Qi Wang, Wenshu Pan, Yanling Tan, Chao Qiu, Yingbo Chen, Ya Li, Hongjing Li, Yinlong Ye, Naizhong Xu, Nian Wu, Xiao Ye, Rongjian Liu, Jianfeng Ma, Chonglie |
author_facet | Liu, Xingdan Ding, Qi Wang, Wenshu Pan, Yanling Tan, Chao Qiu, Yingbo Chen, Ya Li, Hongjing Li, Yinlong Ye, Naizhong Xu, Nian Wu, Xiao Ye, Rongjian Liu, Jianfeng Ma, Chonglie |
author_sort | Liu, Xingdan |
collection | PubMed |
description | BACKGROUND: The rice Waxy (Wx) gene plays a major role in seed amylose synthesis and consequently controls grain amylose content. Wx gene expression is highly regulated at the post-transcriptional level. In particular, the GT/TT polymorphism at the 5′splicing site of its 1st intron greatly affects this intron’s splicing efficiency and defines two predominant Wx alleles, Wx(a) and Wx(b). Wx(a) rice often harbours intermediate to high amylose contents, whereas Wx(b) rice exhibits low to intermediate amylose contents. By deleting the Wx 1st intron using CRISPR/Cas9 technology, we generate a completely novel Wx allele and further investigate how intron removal affects Wx gene expression and rice grain amylose content. RESULTS: CRISPR/Cas9-mediated targeted deletion of the Wx 1st intron was performed on 4 rice inbred lines: KY131 (Wx(b)), X32 (Wx(b)), X35 (Wx(a)) and X55 (Wx(lv)). Deletion of the 1st intron occurred in 8.6–11.8% of the primary transformants of these 4 inbred lines. Compared to wild-type plants, amylose content was significantly increased from 13.0% to approximately 24.0% in KY131 and X32 mutant lines, which both carried the Wx(b) allele. However, no significant difference in amylose content was observed between wild-type plants and X35 and X55 mutant lines, which carried the Wx(a) and Wx(lv) alleles, respectively. Wx gene expression analysis of wild-type plants and mutants yielded results that were highly consistent with amylose content results. KY131 and X32 mutants accumulated increased levels of steady mRNA transcripts compared with wild-type plants, whereas steady mRNA levels were not altered in X35 and X55 mutants compared with wild-type plants. Grain quality, including appearance quality and eating and cooking quality, which are tightly associated with amylose content, was also assessed in wild-type and mutant plants, and data were presented and analysed. CONCLUSIONS: This study presents a novel and rapid strategy to increase amylose content in inbred rice carrying a Wx(b) allele. Our data strongly suggest that the 1st intron of the Wx gene regulates Wx gene expression mainly at the post-transcriptional level in rice. This finding is in contrast to a previous hypothesis suggesting that it influences Wx gene transcription. In addition, removal of the first intron generates a completely novel Wx allele. Further studies on this new Wx allele will provide invaluable insights into the regulation of Wx gene expression, which will help researchers engineer new Wx alleles to facilitate the breeding of rice cultivars with better eating and cooking quality. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12284-021-00548-y. |
format | Online Article Text |
id | pubmed-8727654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-87276542022-01-18 Targeted Deletion of the First Intron of the Wx(b) Allele via CRISPR/Cas9 Significantly Increases Grain Amylose Content in Rice Liu, Xingdan Ding, Qi Wang, Wenshu Pan, Yanling Tan, Chao Qiu, Yingbo Chen, Ya Li, Hongjing Li, Yinlong Ye, Naizhong Xu, Nian Wu, Xiao Ye, Rongjian Liu, Jianfeng Ma, Chonglie Rice (N Y) Review BACKGROUND: The rice Waxy (Wx) gene plays a major role in seed amylose synthesis and consequently controls grain amylose content. Wx gene expression is highly regulated at the post-transcriptional level. In particular, the GT/TT polymorphism at the 5′splicing site of its 1st intron greatly affects this intron’s splicing efficiency and defines two predominant Wx alleles, Wx(a) and Wx(b). Wx(a) rice often harbours intermediate to high amylose contents, whereas Wx(b) rice exhibits low to intermediate amylose contents. By deleting the Wx 1st intron using CRISPR/Cas9 technology, we generate a completely novel Wx allele and further investigate how intron removal affects Wx gene expression and rice grain amylose content. RESULTS: CRISPR/Cas9-mediated targeted deletion of the Wx 1st intron was performed on 4 rice inbred lines: KY131 (Wx(b)), X32 (Wx(b)), X35 (Wx(a)) and X55 (Wx(lv)). Deletion of the 1st intron occurred in 8.6–11.8% of the primary transformants of these 4 inbred lines. Compared to wild-type plants, amylose content was significantly increased from 13.0% to approximately 24.0% in KY131 and X32 mutant lines, which both carried the Wx(b) allele. However, no significant difference in amylose content was observed between wild-type plants and X35 and X55 mutant lines, which carried the Wx(a) and Wx(lv) alleles, respectively. Wx gene expression analysis of wild-type plants and mutants yielded results that were highly consistent with amylose content results. KY131 and X32 mutants accumulated increased levels of steady mRNA transcripts compared with wild-type plants, whereas steady mRNA levels were not altered in X35 and X55 mutants compared with wild-type plants. Grain quality, including appearance quality and eating and cooking quality, which are tightly associated with amylose content, was also assessed in wild-type and mutant plants, and data were presented and analysed. CONCLUSIONS: This study presents a novel and rapid strategy to increase amylose content in inbred rice carrying a Wx(b) allele. Our data strongly suggest that the 1st intron of the Wx gene regulates Wx gene expression mainly at the post-transcriptional level in rice. This finding is in contrast to a previous hypothesis suggesting that it influences Wx gene transcription. In addition, removal of the first intron generates a completely novel Wx allele. Further studies on this new Wx allele will provide invaluable insights into the regulation of Wx gene expression, which will help researchers engineer new Wx alleles to facilitate the breeding of rice cultivars with better eating and cooking quality. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12284-021-00548-y. Springer US 2022-01-04 /pmc/articles/PMC8727654/ /pubmed/34982277 http://dx.doi.org/10.1186/s12284-021-00548-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Liu, Xingdan Ding, Qi Wang, Wenshu Pan, Yanling Tan, Chao Qiu, Yingbo Chen, Ya Li, Hongjing Li, Yinlong Ye, Naizhong Xu, Nian Wu, Xiao Ye, Rongjian Liu, Jianfeng Ma, Chonglie Targeted Deletion of the First Intron of the Wx(b) Allele via CRISPR/Cas9 Significantly Increases Grain Amylose Content in Rice |
title | Targeted Deletion of the First Intron of the Wx(b) Allele via CRISPR/Cas9 Significantly Increases Grain Amylose Content in Rice |
title_full | Targeted Deletion of the First Intron of the Wx(b) Allele via CRISPR/Cas9 Significantly Increases Grain Amylose Content in Rice |
title_fullStr | Targeted Deletion of the First Intron of the Wx(b) Allele via CRISPR/Cas9 Significantly Increases Grain Amylose Content in Rice |
title_full_unstemmed | Targeted Deletion of the First Intron of the Wx(b) Allele via CRISPR/Cas9 Significantly Increases Grain Amylose Content in Rice |
title_short | Targeted Deletion of the First Intron of the Wx(b) Allele via CRISPR/Cas9 Significantly Increases Grain Amylose Content in Rice |
title_sort | targeted deletion of the first intron of the wx(b) allele via crispr/cas9 significantly increases grain amylose content in rice |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727654/ https://www.ncbi.nlm.nih.gov/pubmed/34982277 http://dx.doi.org/10.1186/s12284-021-00548-y |
work_keys_str_mv | AT liuxingdan targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT dingqi targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT wangwenshu targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT panyanling targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT tanchao targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT qiuyingbo targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT chenya targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT lihongjing targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT liyinlong targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT yenaizhong targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT xunian targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT wuxiao targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT yerongjian targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT liujianfeng targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice AT machonglie targeteddeletionofthefirstintronofthewxballeleviacrisprcas9significantlyincreasesgrainamylosecontentinrice |