Cargando…

Evaluation of Sustainability of a Prune Production Process from Farm to Fork Approach based on Thermodynamic Principles and Actual Operational Data

The main objective of the present study is to investigate energy consumption, exergy and greenhouse gas (GHG) emissions from prune production in both the garden and plant sectors. Both energy and exergy analysis methods are used while some sustainability indicators such as the cumulative degree of p...

Descripción completa

Detalles Bibliográficos
Autores principales: Nadi, Fatemeh, Hepbasli, Arif
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727728/
https://www.ncbi.nlm.nih.gov/pubmed/35024168
http://dx.doi.org/10.1002/gch2.202100071
Descripción
Sumario:The main objective of the present study is to investigate energy consumption, exergy and greenhouse gas (GHG) emissions from prune production in both the garden and plant sectors. Both energy and exergy analysis methods are used while some sustainability indicators such as the cumulative degree of perfection (CDP) and the renewability indicator (RI) as well environmental aspects are considered. The analysis is based on the actual operational data. The high energy consumption, exergy and GHG emissions are related to the post‐harvest and the factory operations. Natural gas is determined to be the most effective input to energy consumption, exergy and GHG emissions in the whole process of producing prunes. Based on the sustainability indicators used, the agricultural operation of the plum production process is partially renewable while the factory operation of the prune production process is highly non‐renewable. In cases where the production process of prunes includes the use of renewable energy and plum waste, CDP increases from 0.32 to 2.88 and RI from ‐2.16 to 0.65. The use of renewable sources in producing one ton of prune annually reduces GHG emissions by 362.55 tons and energy consumption by 7.45 TJ worldwide. The use of plum waste would also produce 402.8 TJ of energy per year.