Cargando…
An Improved Deep Learning Model: S-TextBLCNN for Traditional Chinese Medicine Formula Classification
Purpose: This study proposes an S-TextBLCNN model for the efficacy of traditional Chinese medicine (TCM) formula classification. This model uses deep learning to analyze the relationship between herb efficacy and formula efficacy, which is helpful in further exploring the internal rules of formula c...
Autores principales: | Cheng, Ning, Chen, Yue, Gao, Wanqing, Liu, Jiajun, Huang, Qunfu, Yan, Cheng, Huang, Xindi, Ding, Changsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727750/ https://www.ncbi.nlm.nih.gov/pubmed/35003231 http://dx.doi.org/10.3389/fgene.2021.807825 |
Ejemplares similares
-
Improving the Accuracy in Classification of Blood Pressure from Photoplethysmography Using Continuous Wavelet Transform and Deep Learning
por: Wu, Jiaze, et al.
Publicado: (2021) -
TextNetTopics: Text Classification Based Word Grouping as Topics and Topics’ Scoring
por: Yousef, Malik, et al.
Publicado: (2022) -
TextNetTopics Pro, a topic model-based text classification for short text by integration of semantic and document-topic distribution information
por: Voskergian, Daniel, et al.
Publicado: (2023) -
On the Classification Between [Formula: see text] -Ontic and [Formula: see text] -Epistemic Ontological Models
por: Oldofredi, Andrea, et al.
Publicado: (2020) -
Observation of B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] and B[Formula: see text]
[Formula: see text]
[Formula: see text] (2S)K[Formula: see text] decays
por: Tumasyan, A., et al.
Publicado: (2022)