Cargando…
Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm
Recombination has essential functions in meiosis, evolution, and breeding. The frequency and distribution of crossovers dictate the generation of new allele combinations and can vary across species and between sexes. Here, we examine recombination landscapes across the 18 chromosomes of cassava (Man...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728042/ https://www.ncbi.nlm.nih.gov/pubmed/34791172 http://dx.doi.org/10.1093/g3journal/jkab372 |
_version_ | 1784626645481553920 |
---|---|
author | Chan, Ariel W Villwock, Seren S Williams, Amy L Jannink, Jean-Luc |
author_facet | Chan, Ariel W Villwock, Seren S Williams, Amy L Jannink, Jean-Luc |
author_sort | Chan, Ariel W |
collection | PubMed |
description | Recombination has essential functions in meiosis, evolution, and breeding. The frequency and distribution of crossovers dictate the generation of new allele combinations and can vary across species and between sexes. Here, we examine recombination landscapes across the 18 chromosomes of cassava (Manihot esculenta Crantz) with respect to male and female meioses and known introgressions from the wild relative Manihot glaziovii. We used SHAPEIT2 and duoHMM to infer crossovers from genotyping-by-sequencing data and a validated multigenerational pedigree from the International Institute of Tropical Agriculture cassava breeding germplasm consisting of 7020 informative meioses. We then constructed new genetic maps and compared them to an existing map previously constructed by the International Cassava Genetic Map Consortium. We observed higher recombination rates in females compared to males, and lower recombination rates in M. glaziovii introgression segments on chromosomes 1 and 4, with suppressed recombination along the entire length of the chromosome in the case of the chromosome 4 introgression. Finally, we discuss hypothesized mechanisms underlying our observations of heterochiasmy and crossover suppression and discuss the broader implications for plant breeding. |
format | Online Article Text |
id | pubmed-8728042 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-87280422022-01-05 Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm Chan, Ariel W Villwock, Seren S Williams, Amy L Jannink, Jean-Luc G3 (Bethesda) Investigation Recombination has essential functions in meiosis, evolution, and breeding. The frequency and distribution of crossovers dictate the generation of new allele combinations and can vary across species and between sexes. Here, we examine recombination landscapes across the 18 chromosomes of cassava (Manihot esculenta Crantz) with respect to male and female meioses and known introgressions from the wild relative Manihot glaziovii. We used SHAPEIT2 and duoHMM to infer crossovers from genotyping-by-sequencing data and a validated multigenerational pedigree from the International Institute of Tropical Agriculture cassava breeding germplasm consisting of 7020 informative meioses. We then constructed new genetic maps and compared them to an existing map previously constructed by the International Cassava Genetic Map Consortium. We observed higher recombination rates in females compared to males, and lower recombination rates in M. glaziovii introgression segments on chromosomes 1 and 4, with suppressed recombination along the entire length of the chromosome in the case of the chromosome 4 introgression. Finally, we discuss hypothesized mechanisms underlying our observations of heterochiasmy and crossover suppression and discuss the broader implications for plant breeding. Oxford University Press 2021-11-15 /pmc/articles/PMC8728042/ /pubmed/34791172 http://dx.doi.org/10.1093/g3journal/jkab372 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigation Chan, Ariel W Villwock, Seren S Williams, Amy L Jannink, Jean-Luc Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm |
title | Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm |
title_full | Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm |
title_fullStr | Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm |
title_full_unstemmed | Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm |
title_short | Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm |
title_sort | sexual dimorphism and the effect of wild introgressions on recombination in cassava (manihot esculenta crantz) breeding germplasm |
topic | Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728042/ https://www.ncbi.nlm.nih.gov/pubmed/34791172 http://dx.doi.org/10.1093/g3journal/jkab372 |
work_keys_str_mv | AT chanarielw sexualdimorphismandtheeffectofwildintrogressionsonrecombinationincassavamanihotesculentacrantzbreedinggermplasm AT villwockserens sexualdimorphismandtheeffectofwildintrogressionsonrecombinationincassavamanihotesculentacrantzbreedinggermplasm AT williamsamyl sexualdimorphismandtheeffectofwildintrogressionsonrecombinationincassavamanihotesculentacrantzbreedinggermplasm AT janninkjeanluc sexualdimorphismandtheeffectofwildintrogressionsonrecombinationincassavamanihotesculentacrantzbreedinggermplasm |