Cargando…
Computational elucidation of spatial gene expression variation from spatially resolved transcriptomics data
Recent advances in spatially resolved transcriptomics (SRT) have revolutionized biological and medical research and enabled unprecedented insight into the functional organization and cell communication of tissues and organs in situ. Identifying and elucidating gene spatial expression variation (SE a...
Autores principales: | Li, Ke, Yan, Congcong, Li, Chenghao, Chen, Lu, Zhao, Jingting, Zhang, Zicheng, Bao, Siqi, Sun, Jie, Zhou, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728308/ https://www.ncbi.nlm.nih.gov/pubmed/35036053 http://dx.doi.org/10.1016/j.omtn.2021.12.009 |
Ejemplares similares
-
Computational challenges and opportunities in spatially resolved transcriptomic data analysis
por: Atta, Lyla, et al.
Publicado: (2021) -
Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning
por: Zuo, Chunman, et al.
Publicado: (2022) -
spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
por: Pardo, Brenda, et al.
Publicado: (2022) -
SpatialExperiment: infrastructure for spatially-resolved transcriptomics data in R using Bioconductor
por: Righelli, Dario, et al.
Publicado: (2022) -
SpatialDB: a database for spatially resolved transcriptomes
por: Fan, Zhen, et al.
Publicado: (2020)