Cargando…
Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration
Axonal regeneration in the mature CNS is limited by extracellular inhibitory factors. Triple knockout mice lacking the major myelin-associated inhibitors do not display spontaneous regeneration after injury, indicating the presence of other inhibitors. Searching for such inhibitors, we have detected...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728726/ https://www.ncbi.nlm.nih.gov/pubmed/34993473 http://dx.doi.org/10.1093/braincomms/fcab271 |
_version_ | 1784626791785168896 |
---|---|
author | Siddiq, Mustafa M Hannila, Sari S Zorina, Yana Nikulina, Elena Rabinovich, Vera Hou, Jianwei Huq, Rumana Richman, Erica L Tolentino, Rosa E Hansen, Jens Velenosi, Adam Kwon, Brian K Tsirka, Stella E Maze, Ian Sebra, Robert Beaumont, Kristin G Toro, Carlos A Cardozo, Christopher P Iyengar, Ravi Filbin, Marie T |
author_facet | Siddiq, Mustafa M Hannila, Sari S Zorina, Yana Nikulina, Elena Rabinovich, Vera Hou, Jianwei Huq, Rumana Richman, Erica L Tolentino, Rosa E Hansen, Jens Velenosi, Adam Kwon, Brian K Tsirka, Stella E Maze, Ian Sebra, Robert Beaumont, Kristin G Toro, Carlos A Cardozo, Christopher P Iyengar, Ravi Filbin, Marie T |
author_sort | Siddiq, Mustafa M |
collection | PubMed |
description | Axonal regeneration in the mature CNS is limited by extracellular inhibitory factors. Triple knockout mice lacking the major myelin-associated inhibitors do not display spontaneous regeneration after injury, indicating the presence of other inhibitors. Searching for such inhibitors, we have detected elevated levels of histone H3 in human CSF 24 h after spinal cord injury. Following dorsal column lesions in mice and optic nerve crushes in rats, elevated levels of extracellular histone H3 were detected at the injury site. Similar to myelin-associated inhibitors, these extracellular histones induced growth cone collapse and inhibited neurite outgrowth. Histones mediate inhibition through the transcription factor Y-box-binding protein 1 and Toll-like receptor 2, and these effects are independent of the Nogo receptor. Histone-mediated inhibition can be reversed by the addition of activated protein C in vitro, and activated protein C treatment promotes axonal regeneration in the crushed optic nerve in vivo. These findings identify extracellular histones as a new class of nerve regeneration-inhibiting molecules within the injured CNS. |
format | Online Article Text |
id | pubmed-8728726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-87287262022-01-05 Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration Siddiq, Mustafa M Hannila, Sari S Zorina, Yana Nikulina, Elena Rabinovich, Vera Hou, Jianwei Huq, Rumana Richman, Erica L Tolentino, Rosa E Hansen, Jens Velenosi, Adam Kwon, Brian K Tsirka, Stella E Maze, Ian Sebra, Robert Beaumont, Kristin G Toro, Carlos A Cardozo, Christopher P Iyengar, Ravi Filbin, Marie T Brain Commun Original Article Axonal regeneration in the mature CNS is limited by extracellular inhibitory factors. Triple knockout mice lacking the major myelin-associated inhibitors do not display spontaneous regeneration after injury, indicating the presence of other inhibitors. Searching for such inhibitors, we have detected elevated levels of histone H3 in human CSF 24 h after spinal cord injury. Following dorsal column lesions in mice and optic nerve crushes in rats, elevated levels of extracellular histone H3 were detected at the injury site. Similar to myelin-associated inhibitors, these extracellular histones induced growth cone collapse and inhibited neurite outgrowth. Histones mediate inhibition through the transcription factor Y-box-binding protein 1 and Toll-like receptor 2, and these effects are independent of the Nogo receptor. Histone-mediated inhibition can be reversed by the addition of activated protein C in vitro, and activated protein C treatment promotes axonal regeneration in the crushed optic nerve in vivo. These findings identify extracellular histones as a new class of nerve regeneration-inhibiting molecules within the injured CNS. Oxford University Press 2021-11-13 /pmc/articles/PMC8728726/ /pubmed/34993473 http://dx.doi.org/10.1093/braincomms/fcab271 Text en © The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Siddiq, Mustafa M Hannila, Sari S Zorina, Yana Nikulina, Elena Rabinovich, Vera Hou, Jianwei Huq, Rumana Richman, Erica L Tolentino, Rosa E Hansen, Jens Velenosi, Adam Kwon, Brian K Tsirka, Stella E Maze, Ian Sebra, Robert Beaumont, Kristin G Toro, Carlos A Cardozo, Christopher P Iyengar, Ravi Filbin, Marie T Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration |
title | Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration |
title_full | Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration |
title_fullStr | Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration |
title_full_unstemmed | Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration |
title_short | Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration |
title_sort | extracellular histones, a new class of inhibitory molecules of cns axonal regeneration |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728726/ https://www.ncbi.nlm.nih.gov/pubmed/34993473 http://dx.doi.org/10.1093/braincomms/fcab271 |
work_keys_str_mv | AT siddiqmustafam extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT hannilasaris extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT zorinayana extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT nikulinaelena extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT rabinovichvera extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT houjianwei extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT huqrumana extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT richmanerical extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT tolentinorosae extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT hansenjens extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT velenosiadam extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT kwonbriank extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT tsirkastellae extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT mazeian extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT sebrarobert extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT beaumontkristing extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT torocarlosa extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT cardozochristopherp extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT iyengarravi extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration AT filbinmariet extracellularhistonesanewclassofinhibitorymoleculesofcnsaxonalregeneration |