Cargando…
Interpretable CNN for ischemic stroke subtype classification with active model adaptation
BACKGROUND: TOAST subtype classification is important for diagnosis and research of ischemic stroke. Limited by experience of neurologist and time-consuming manual adjudication, it is a big challenge to finish TOAST classification effectively. We propose a novel active deep learning architecture to...
Autores principales: | Zhang, Shuo, Wang, Jing, Pei, Lulu, Liu, Kai, Gao, Yuan, Fang, Hui, Zhang, Rui, Zhao, Lu, Sun, Shilei, Wu, Jun, Song, Bo, Dai, Honghua, Li, Runzhi, Xu, Yuming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8729146/ https://www.ncbi.nlm.nih.gov/pubmed/34986813 http://dx.doi.org/10.1186/s12911-021-01721-5 |
Ejemplares similares
-
Changes of Metabolites in Acute Ischemic Stroke and Its Subtypes
por: Wang, Xin, et al.
Publicado: (2021) -
Ischemic Stroke Subtype Classification: An Asian Viewpoint
por: Kim, Bum Joon, et al.
Publicado: (2014) -
Atherogenic Index of Plasma Predicts Outcomes in Acute Ischemic Stroke
por: Liu, Hongbing, et al.
Publicado: (2021) -
Monocyte-to-High-Density Lipoprotein Ratio Predicts the Outcome of Acute Ischemic Stroke
por: Liu, Hongbing, et al.
Publicado: (2020) -
Validation of CSR model to predict stroke risk after transient ischemic attack
por: Zhao, Lu, et al.
Publicado: (2022)