Cargando…
gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network
BACKGROUND: Long non-coding RNAs (lncRNAs) are related to human diseases by regulating gene expression. Identifying lncRNA-disease associations (LDAs) will contribute to diagnose, treatment, and prognosis of diseases. However, the identification of LDAs by the biological experiments is time-consumin...
Autores principales: | Wang, Li, Zhong, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8729153/ https://www.ncbi.nlm.nih.gov/pubmed/34983363 http://dx.doi.org/10.1186/s12859-021-04548-z |
Ejemplares similares
-
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Heterogeneous graph neural network for lncRNA-disease association prediction
por: Shi, Hong, et al.
Publicado: (2022) -
Prediction of lncRNA–Disease Associations via Closest Node Weight Graphs of the Spatial Neighborhood Based on the Edge Attention Graph Convolutional Network
por: Li, Jianwei, et al.
Publicado: (2022) -
Multiview Consensus Graph Learning for lncRNA–Disease Association Prediction
por: Tan, Haojiang, et al.
Publicado: (2020) -
Predicting lncRNA-disease associations based on heterogeneous graph convolutional generative adversarial network
por: Lu, Zhonghao, et al.
Publicado: (2023)