Cargando…
PathwayMultiomics: An R Package for Efficient Integrative Analysis of Multi-Omics Datasets With Matched or Un-matched Samples
Recent advances in technology have made multi-omics datasets increasingly available to researchers. To leverage the wealth of information in multi-omics data, a number of integrative analysis strategies have been proposed recently. However, effectively extracting biological insights from these large...
Autores principales: | Odom, Gabriel J., Colaprico, Antonio, Silva, Tiago C., Chen, X. Steven, Wang, Lily |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8729182/ https://www.ncbi.nlm.nih.gov/pubmed/35003218 http://dx.doi.org/10.3389/fgene.2021.783713 |
Ejemplares similares
-
Integrating omics datasets with the OmicsPLS package
por: Bouhaddani, Said el, et al.
Publicado: (2018) -
Simple Matching Using QIIME 2 and RDP Reveals Misidentified Sequences and an Underrepresentation of Fungi in Reference Datasets
por: Eldred, Lauren E., et al.
Publicado: (2021) -
A Review of Integrative Imputation for Multi-Omics Datasets
por: Song, Meng, et al.
Publicado: (2020) -
LR Hunting: A Random Forest Based Cell–Cell Interaction Discovery Method for Single-Cell Gene Expression Data
por: Lu, Min, et al.
Publicado: (2021) -
Overcoming the matched-sample bottleneck: an orthogonal approach to integrate omic data
por: Nguyen, Tin, et al.
Publicado: (2016)