Cargando…
SWIFT: A deep learning approach to prediction of hypoxemic events in critically-Ill patients using SpO(2) waveform prediction
Hypoxemia is a significant driver of mortality and poor clinical outcomes in conditions such as brain injury and cardiac arrest in critically ill patients, including COVID-19 patients. Given the host of negative clinical outcomes attributed to hypoxemia, identifying patients likely to experience hyp...
Autores principales: | Annapragada, Akshaya V., Greenstein, Joseph L., Bose, Sanjukta N., Winters, Bradford D., Sarma, Sridevi V., Winslow, Raimond L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730462/ https://www.ncbi.nlm.nih.gov/pubmed/34932550 http://dx.doi.org/10.1371/journal.pcbi.1009712 |
Ejemplares similares
-
SWIFT: A Deep Learning Approach to Prediction of Hypoxemic Events in Critically-Ill Patients Using SpO(2) Waveform Prediction
por: Annapragada, Akshaya V., et al.
Publicado: (2021) -
Early Prediction of Multiple Organ Dysfunction in the Pediatric Intensive Care Unit
por: Bose, Sanjukta N., et al.
Publicado: (2021) -
A data-driven model for early prediction of need for invasive mechanical ventilation in pediatric intensive care unit patients
por: Bose, Sanjukta N., et al.
Publicado: (2023) -
Data-driven discovery of a novel sepsis pre-shock state predicts impending septic shock in the ICU
por: Liu, Ran, et al.
Publicado: (2019) -
Characteristics of the nocturnal desaturation waveform pattern of SpO(2) in COPD patients: an observational study
por: Yoshizaki, Asuka, et al.
Publicado: (2021)