Cargando…
An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, t...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730629/ https://www.ncbi.nlm.nih.gov/pubmed/34985964 http://dx.doi.org/10.1126/sciadv.abg9471 |
_version_ | 1784627176022212608 |
---|---|
author | Hahn, Tim Ernsting, Jan Winter, Nils R. Holstein, Vincent Leenings, Ramona Beisemann, Marie Fisch, Lukas Sarink, Kelvin Emden, Daniel Opel, Nils Redlich, Ronny Repple, Jonathan Grotegerd, Dominik Meinert, Susanne Hirsch, Jochen G. Niendorf, Thoralf Endemann, Beate Bamberg, Fabian Kröncke, Thomas Bülow, Robin Völzke, Henry von Stackelberg, Oyunbileg Sowade, Ramona Felizitas Umutlu, Lale Schmidt, Börge Caspers, Svenja Kugel, Harald Kircher, Tilo Risse, Benjamin Gaser, Christian Cole, James H. Dannlowski, Udo Berger, Klaus |
author_facet | Hahn, Tim Ernsting, Jan Winter, Nils R. Holstein, Vincent Leenings, Ramona Beisemann, Marie Fisch, Lukas Sarink, Kelvin Emden, Daniel Opel, Nils Redlich, Ronny Repple, Jonathan Grotegerd, Dominik Meinert, Susanne Hirsch, Jochen G. Niendorf, Thoralf Endemann, Beate Bamberg, Fabian Kröncke, Thomas Bülow, Robin Völzke, Henry von Stackelberg, Oyunbileg Sowade, Ramona Felizitas Umutlu, Lale Schmidt, Börge Caspers, Svenja Kugel, Harald Kircher, Tilo Risse, Benjamin Gaser, Christian Cole, James H. Dannlowski, Udo Berger, Klaus |
author_sort | Hahn, Tim |
collection | PubMed |
description | The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available. |
format | Online Article Text |
id | pubmed-8730629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-87306292022-01-19 An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling Hahn, Tim Ernsting, Jan Winter, Nils R. Holstein, Vincent Leenings, Ramona Beisemann, Marie Fisch, Lukas Sarink, Kelvin Emden, Daniel Opel, Nils Redlich, Ronny Repple, Jonathan Grotegerd, Dominik Meinert, Susanne Hirsch, Jochen G. Niendorf, Thoralf Endemann, Beate Bamberg, Fabian Kröncke, Thomas Bülow, Robin Völzke, Henry von Stackelberg, Oyunbileg Sowade, Ramona Felizitas Umutlu, Lale Schmidt, Börge Caspers, Svenja Kugel, Harald Kircher, Tilo Risse, Benjamin Gaser, Christian Cole, James H. Dannlowski, Udo Berger, Klaus Sci Adv Neuroscience The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available. American Association for the Advancement of Science 2022-01-05 /pmc/articles/PMC8730629/ /pubmed/34985964 http://dx.doi.org/10.1126/sciadv.abg9471 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Neuroscience Hahn, Tim Ernsting, Jan Winter, Nils R. Holstein, Vincent Leenings, Ramona Beisemann, Marie Fisch, Lukas Sarink, Kelvin Emden, Daniel Opel, Nils Redlich, Ronny Repple, Jonathan Grotegerd, Dominik Meinert, Susanne Hirsch, Jochen G. Niendorf, Thoralf Endemann, Beate Bamberg, Fabian Kröncke, Thomas Bülow, Robin Völzke, Henry von Stackelberg, Oyunbileg Sowade, Ramona Felizitas Umutlu, Lale Schmidt, Börge Caspers, Svenja Kugel, Harald Kircher, Tilo Risse, Benjamin Gaser, Christian Cole, James H. Dannlowski, Udo Berger, Klaus An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling |
title | An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling |
title_full | An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling |
title_fullStr | An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling |
title_full_unstemmed | An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling |
title_short | An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling |
title_sort | uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730629/ https://www.ncbi.nlm.nih.gov/pubmed/34985964 http://dx.doi.org/10.1126/sciadv.abg9471 |
work_keys_str_mv | AT hahntim anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT ernstingjan anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT winternilsr anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT holsteinvincent anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT leeningsramona anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT beisemannmarie anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT fischlukas anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT sarinkkelvin anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT emdendaniel anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT opelnils anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT redlichronny anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT repplejonathan anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT grotegerddominik anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT meinertsusanne anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT hirschjocheng anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT niendorfthoralf anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT endemannbeate anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT bambergfabian anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT kronckethomas anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT bulowrobin anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT volzkehenry anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT vonstackelbergoyunbileg anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT sowaderamonafelizitas anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT umutlulale anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT schmidtborge anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT casperssvenja anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT kugelharald anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT kirchertilo anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT rissebenjamin anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT gaserchristian anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT colejamesh anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT dannlowskiudo anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT bergerklaus anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT hahntim uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT ernstingjan uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT winternilsr uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT holsteinvincent uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT leeningsramona uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT beisemannmarie uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT fischlukas uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT sarinkkelvin uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT emdendaniel uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT opelnils uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT redlichronny uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT repplejonathan uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT grotegerddominik uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT meinertsusanne uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT hirschjocheng uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT niendorfthoralf uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT endemannbeate uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT bambergfabian uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT kronckethomas uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT bulowrobin uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT volzkehenry uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT vonstackelbergoyunbileg uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT sowaderamonafelizitas uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT umutlulale uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT schmidtborge uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT casperssvenja uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT kugelharald uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT kirchertilo uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT rissebenjamin uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT gaserchristian uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT colejamesh uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT dannlowskiudo uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling AT bergerklaus uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling |