Cargando…

An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling

The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Hahn, Tim, Ernsting, Jan, Winter, Nils R., Holstein, Vincent, Leenings, Ramona, Beisemann, Marie, Fisch, Lukas, Sarink, Kelvin, Emden, Daniel, Opel, Nils, Redlich, Ronny, Repple, Jonathan, Grotegerd, Dominik, Meinert, Susanne, Hirsch, Jochen G., Niendorf, Thoralf, Endemann, Beate, Bamberg, Fabian, Kröncke, Thomas, Bülow, Robin, Völzke, Henry, von Stackelberg, Oyunbileg, Sowade, Ramona Felizitas, Umutlu, Lale, Schmidt, Börge, Caspers, Svenja, Kugel, Harald, Kircher, Tilo, Risse, Benjamin, Gaser, Christian, Cole, James H., Dannlowski, Udo, Berger, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730629/
https://www.ncbi.nlm.nih.gov/pubmed/34985964
http://dx.doi.org/10.1126/sciadv.abg9471
_version_ 1784627176022212608
author Hahn, Tim
Ernsting, Jan
Winter, Nils R.
Holstein, Vincent
Leenings, Ramona
Beisemann, Marie
Fisch, Lukas
Sarink, Kelvin
Emden, Daniel
Opel, Nils
Redlich, Ronny
Repple, Jonathan
Grotegerd, Dominik
Meinert, Susanne
Hirsch, Jochen G.
Niendorf, Thoralf
Endemann, Beate
Bamberg, Fabian
Kröncke, Thomas
Bülow, Robin
Völzke, Henry
von Stackelberg, Oyunbileg
Sowade, Ramona Felizitas
Umutlu, Lale
Schmidt, Börge
Caspers, Svenja
Kugel, Harald
Kircher, Tilo
Risse, Benjamin
Gaser, Christian
Cole, James H.
Dannlowski, Udo
Berger, Klaus
author_facet Hahn, Tim
Ernsting, Jan
Winter, Nils R.
Holstein, Vincent
Leenings, Ramona
Beisemann, Marie
Fisch, Lukas
Sarink, Kelvin
Emden, Daniel
Opel, Nils
Redlich, Ronny
Repple, Jonathan
Grotegerd, Dominik
Meinert, Susanne
Hirsch, Jochen G.
Niendorf, Thoralf
Endemann, Beate
Bamberg, Fabian
Kröncke, Thomas
Bülow, Robin
Völzke, Henry
von Stackelberg, Oyunbileg
Sowade, Ramona Felizitas
Umutlu, Lale
Schmidt, Börge
Caspers, Svenja
Kugel, Harald
Kircher, Tilo
Risse, Benjamin
Gaser, Christian
Cole, James H.
Dannlowski, Udo
Berger, Klaus
author_sort Hahn, Tim
collection PubMed
description The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available.
format Online
Article
Text
id pubmed-8730629
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-87306292022-01-19 An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling Hahn, Tim Ernsting, Jan Winter, Nils R. Holstein, Vincent Leenings, Ramona Beisemann, Marie Fisch, Lukas Sarink, Kelvin Emden, Daniel Opel, Nils Redlich, Ronny Repple, Jonathan Grotegerd, Dominik Meinert, Susanne Hirsch, Jochen G. Niendorf, Thoralf Endemann, Beate Bamberg, Fabian Kröncke, Thomas Bülow, Robin Völzke, Henry von Stackelberg, Oyunbileg Sowade, Ramona Felizitas Umutlu, Lale Schmidt, Börge Caspers, Svenja Kugel, Harald Kircher, Tilo Risse, Benjamin Gaser, Christian Cole, James H. Dannlowski, Udo Berger, Klaus Sci Adv Neuroscience The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available. American Association for the Advancement of Science 2022-01-05 /pmc/articles/PMC8730629/ /pubmed/34985964 http://dx.doi.org/10.1126/sciadv.abg9471 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Neuroscience
Hahn, Tim
Ernsting, Jan
Winter, Nils R.
Holstein, Vincent
Leenings, Ramona
Beisemann, Marie
Fisch, Lukas
Sarink, Kelvin
Emden, Daniel
Opel, Nils
Redlich, Ronny
Repple, Jonathan
Grotegerd, Dominik
Meinert, Susanne
Hirsch, Jochen G.
Niendorf, Thoralf
Endemann, Beate
Bamberg, Fabian
Kröncke, Thomas
Bülow, Robin
Völzke, Henry
von Stackelberg, Oyunbileg
Sowade, Ramona Felizitas
Umutlu, Lale
Schmidt, Börge
Caspers, Svenja
Kugel, Harald
Kircher, Tilo
Risse, Benjamin
Gaser, Christian
Cole, James H.
Dannlowski, Udo
Berger, Klaus
An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
title An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
title_full An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
title_fullStr An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
title_full_unstemmed An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
title_short An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
title_sort uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730629/
https://www.ncbi.nlm.nih.gov/pubmed/34985964
http://dx.doi.org/10.1126/sciadv.abg9471
work_keys_str_mv AT hahntim anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT ernstingjan anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT winternilsr anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT holsteinvincent anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT leeningsramona anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT beisemannmarie anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT fischlukas anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT sarinkkelvin anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT emdendaniel anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT opelnils anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT redlichronny anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT repplejonathan anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT grotegerddominik anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT meinertsusanne anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT hirschjocheng anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT niendorfthoralf anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT endemannbeate anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT bambergfabian anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT kronckethomas anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT bulowrobin anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT volzkehenry anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT vonstackelbergoyunbileg anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT sowaderamonafelizitas anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT umutlulale anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT schmidtborge anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT casperssvenja anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT kugelharald anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT kirchertilo anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT rissebenjamin anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT gaserchristian anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT colejamesh anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT dannlowskiudo anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT bergerklaus anuncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT hahntim uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT ernstingjan uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT winternilsr uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT holsteinvincent uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT leeningsramona uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT beisemannmarie uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT fischlukas uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT sarinkkelvin uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT emdendaniel uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT opelnils uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT redlichronny uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT repplejonathan uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT grotegerddominik uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT meinertsusanne uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT hirschjocheng uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT niendorfthoralf uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT endemannbeate uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT bambergfabian uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT kronckethomas uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT bulowrobin uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT volzkehenry uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT vonstackelbergoyunbileg uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT sowaderamonafelizitas uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT umutlulale uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT schmidtborge uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT casperssvenja uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT kugelharald uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT kirchertilo uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT rissebenjamin uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT gaserchristian uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT colejamesh uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT dannlowskiudo uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling
AT bergerklaus uncertaintyawareshareableandtransparentneuralnetworkarchitectureforbrainagemodeling