Cargando…
An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, t...
Autores principales: | Hahn, Tim, Ernsting, Jan, Winter, Nils R., Holstein, Vincent, Leenings, Ramona, Beisemann, Marie, Fisch, Lukas, Sarink, Kelvin, Emden, Daniel, Opel, Nils, Redlich, Ronny, Repple, Jonathan, Grotegerd, Dominik, Meinert, Susanne, Hirsch, Jochen G., Niendorf, Thoralf, Endemann, Beate, Bamberg, Fabian, Kröncke, Thomas, Bülow, Robin, Völzke, Henry, von Stackelberg, Oyunbileg, Sowade, Ramona Felizitas, Umutlu, Lale, Schmidt, Börge, Caspers, Svenja, Kugel, Harald, Kircher, Tilo, Risse, Benjamin, Gaser, Christian, Cole, James H., Dannlowski, Udo, Berger, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730629/ https://www.ncbi.nlm.nih.gov/pubmed/34985964 http://dx.doi.org/10.1126/sciadv.abg9471 |
Ejemplares similares
-
PHOTONAI—A Python API for rapid machine learning model development
por: Leenings, Ramona, et al.
Publicado: (2021) -
Towards a network control theory of electroconvulsive therapy response
por: Hahn, Tim, et al.
Publicado: (2023) -
Genetic, individual, and familial risk correlates of brain network controllability in major depressive disorder
por: Hahn, Tim, et al.
Publicado: (2023) -
Editorial: Predicting Chronological Age From Structural Neuroimaging: The Predictive Analytics Competition 2019
por: Fisch, Lukas, et al.
Publicado: (2021) -
Systematic misestimation of machine learning performance in neuroimaging studies of depression
por: Flint, Claas, et al.
Publicado: (2021)