Cargando…
A random forest model for forecasting regional COVID-19 cases utilizing reproduction number estimates and demographic data
During the COVID-19 pandemic, predicting case spikes at the local level is important for a precise, targeted public health response and is generally done with compartmental models. The performance of compartmental models is highly dependent on the accuracy of their assumptions about disease dynamics...
Autores principales: | Galasso, Joseph, Cao, Duy M., Hochberg, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8731233/ https://www.ncbi.nlm.nih.gov/pubmed/35013654 http://dx.doi.org/10.1016/j.chaos.2021.111779 |
Ejemplares similares
-
COVID-19 outbreak reproduction number estimations and forecasting in Marche, Italy
por: Chintalapudi, Nalini, et al.
Publicado: (2020) -
Fitting to the UK COVID-19 outbreak, short-term forecasts and estimating the reproductive number
por: Keeling, Matt J., et al.
Publicado: (2021) -
Fitting to the UK COVID-19 outbreak, short-term forecasts and
estimating the reproductive number
por: Keeling, Matt J., et al.
Publicado: (2022) -
Estimating disease prevalence from drug utilization data using the Random Forest algorithm
por: Slobbe, Laurentius C J, et al.
Publicado: (2019) -
Personnel Numbers and Distribution: Forecasts for the End of 1971 and Estimates for 1972
Publicado: (1971)