Cargando…

A Direct Rapid Phenotypic Antimicrobial Susceptibility Test Enables Early Selection of Optimal Antibiotics to Treat Bacteremia in COVID-19 Patients

BACKGROUND: Co-infection with bacteria and severe acute respiratory syndrome coronavirus 2 may result in greater use of healthcare resources and a poor prognosis. Therefore, early selection and use of optimal antibiotics are essential. The direct rapid antibiotic susceptibility test (dRAST) can dete...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Do Hyeon, Chang, Euijin, Kang, Chang Kyung, Choe, Pyoeng Gyun, Kim, Nam Joong, Kim, Taek Soo, Park, Wan Beom, Oh, Myoung-don
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Infectious Diseases; Korean Society for Antimicrobial Therapy; The Korean Society for AIDS 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8731248/
https://www.ncbi.nlm.nih.gov/pubmed/34979608
http://dx.doi.org/10.3947/ic.2021.0139
Descripción
Sumario:BACKGROUND: Co-infection with bacteria and severe acute respiratory syndrome coronavirus 2 may result in greater use of healthcare resources and a poor prognosis. Therefore, early selection and use of optimal antibiotics are essential. The direct rapid antibiotic susceptibility test (dRAST) can detect antibiotic resistance within 6 h of a Gram smear result. This study aimed to assess the effectiveness of dRAST for improving early selection of appropriate antibiotics for coronavirus disease 2019 (COVID-19) patients with bacteremia. MATERIALS AND METHODS: This retrospective study included 96 blood culture-positive COVID-19 patients. Bacterial isolates and antimicrobial resistance profiles of each case were evaluated. Cases were divided into two groups based on whether they underwent conventional antibiotic susceptibility test (AST) or dRAST. The time to optimal targeted treatment for the two groups was investigated and compared. In addition, we examined the proportion of cases for which appropriate antibiotics were selected and broad spectrum antibiotics were administered at 72 h from blood sample collection. RESULTS: The mean time to optimal targeted antibiotic treatment was shorter for the dRAST group [55.7; standard deviation (SD), 28.7 vs. 92.3; SD, 51.1 h; P = 0.041]. The proportion of cases receiving optimal targeted antibiotics 72 h after blood collection for culture was higher [6/10 (60.0%) vs. 10/25 (40.0%)] and the percentage receiving broad spectrum antibiotics at 72 h was lower [6/10 (60.0%) vs. 19/25 (76.0%)] in the dRAST group than in the conventional AST group. In terms of microbiology profile, the contamination rate was high (35.5%) and multidrug-resistant strains were common (63.2%) in COVID-19 patients with bacteremia. CONCLUSION: Application of dRAST for selection of antibiotics to treat bacteremia in COVID-19 patients may enable earlier and optimal treatment. The high incidence of contamination and resistant organisms in blood cultures from COVID-19 patients suggest that dRAST may speed up appropriate targeted treatment.