Cargando…

Methanolic Extract of Myrsine africana Leaf Ameliorates Hyperglycemia and Dyslipidemia in Alloxan-Induced Diabetic Albino Mice

BACKGROUND: Diabetes mellitus is one of the leading public health problems globally, and its prevalence is increasing in Ethiopia. The current drugs for people with diabetes are costly, less effective, and less safe with a challenging administration method. Thus, globally, the need for alternative h...

Descripción completa

Detalles Bibliográficos
Autor principal: Amare, Yosef Eshetie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8731287/
https://www.ncbi.nlm.nih.gov/pubmed/35003299
http://dx.doi.org/10.1155/2021/3987656
Descripción
Sumario:BACKGROUND: Diabetes mellitus is one of the leading public health problems globally, and its prevalence is increasing in Ethiopia. The current drugs for people with diabetes are costly, less effective, and less safe with a challenging administration method. Thus, globally, the need for alternative herbal antidiabetic medicines is increasing. In the previous studies, antioxidant activities have been seen in crude extracts of M. africana leaves, which is an auspicious sign of antidiabetic property. Accordingly, this study has evaluated the antidiabetic and antidyslipidemic activities of methanolic extract of M. africana leaves. METHODS: Hypoglycemic and antihyperglycemic activities of the three doses (250 mg/kg, 500 mg/kg, and 1000 mg/kg) of crude methanolic extract of M. africana leaf were studied on normoglycemic, oral glucose-loaded, and alloxan-induced diabetic mice models. The effect of the extract on diabetic dyslipidemia, insulin and glycated hemoglobin levels, carbohydrate-metabolizing enzymes, and body weight was also studied in alloxan-induced diabetic mice. Glibenclamide (5 mg/kg) was used as a standard drug in all cases. Data analysis was carried out using mixed-design ANOVA. A P value of ≤0.05 was considered a statistically significant difference. RESULTS: The methanolic extract of M. africana leaf did not show acute toxicity up to the dose of 5000 mg/kg and showed better glucose utilization in the oral glucose tolerance test. After 14 days of treatment, M. africana leaf extract decreased the blood glucose level, glycated hemoglobin, glucose-6-phosphatase, and fructose-1-6-bisphosphatase in diabetic mice. In contrast, it increased hexokinase and insulin levels in diabetic mice. Moreover, weight loss and dyslipidemia profiles have been corrected significantly in diabetic mice. CONCLUSION: M. africana leaves showed antihyperglycemic and antidyslipidemic effects in alloxan-induced diabetic mice. That suggests M. africana may be a potential treatment option for diabetes in the future. However, further molecular studies are required to analyze the mechanisms.