Cargando…

The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing

There is limited access to effective cervical cancer screening programs in many resource‐limited settings, resulting in continued high cervical cancer burden. Human papillomavirus (HPV) testing is increasingly recognized to be the preferable primary screening approach if affordable due to superior l...

Descripción completa

Detalles Bibliográficos
Autores principales: Desai, Kanan T., Befano, Brian, Xue, Zhiyun, Kelly, Helen, Campos, Nicole G., Egemen, Didem, Gage, Julia C., Rodriguez, Ana‐Cecilia, Sahasrabuddhe, Vikrant, Levitz, David, Pearlman, Paul, Jeronimo, Jose, Antani, Sameer, Schiffman, Mark, de Sanjosé, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8732320/
https://www.ncbi.nlm.nih.gov/pubmed/34800038
http://dx.doi.org/10.1002/ijc.33879
_version_ 1784627562586046464
author Desai, Kanan T.
Befano, Brian
Xue, Zhiyun
Kelly, Helen
Campos, Nicole G.
Egemen, Didem
Gage, Julia C.
Rodriguez, Ana‐Cecilia
Sahasrabuddhe, Vikrant
Levitz, David
Pearlman, Paul
Jeronimo, Jose
Antani, Sameer
Schiffman, Mark
de Sanjosé, Silvia
author_facet Desai, Kanan T.
Befano, Brian
Xue, Zhiyun
Kelly, Helen
Campos, Nicole G.
Egemen, Didem
Gage, Julia C.
Rodriguez, Ana‐Cecilia
Sahasrabuddhe, Vikrant
Levitz, David
Pearlman, Paul
Jeronimo, Jose
Antani, Sameer
Schiffman, Mark
de Sanjosé, Silvia
author_sort Desai, Kanan T.
collection PubMed
description There is limited access to effective cervical cancer screening programs in many resource‐limited settings, resulting in continued high cervical cancer burden. Human papillomavirus (HPV) testing is increasingly recognized to be the preferable primary screening approach if affordable due to superior long‐term reassurance when negative and adaptability to self‐sampling. Visual inspection with acetic acid (VIA) is an inexpensive but subjective and inaccurate method widely used in resource‐limited settings, either for primary screening or for triage of HPV‐positive individuals. A deep learning (DL)‐based automated visual evaluation (AVE) of cervical images has been developed to help improve the accuracy and reproducibility of VIA as assistive technology. However, like any new clinical technology, rigorous evaluation and proof of clinical effectiveness are required before AVE is implemented widely. In the current article, we outline essential clinical and technical considerations involved in building a validated DL‐based AVE tool for broad use as a clinical test.
format Online
Article
Text
id pubmed-8732320
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-87323202022-10-14 The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing Desai, Kanan T. Befano, Brian Xue, Zhiyun Kelly, Helen Campos, Nicole G. Egemen, Didem Gage, Julia C. Rodriguez, Ana‐Cecilia Sahasrabuddhe, Vikrant Levitz, David Pearlman, Paul Jeronimo, Jose Antani, Sameer Schiffman, Mark de Sanjosé, Silvia Int J Cancer Special Report There is limited access to effective cervical cancer screening programs in many resource‐limited settings, resulting in continued high cervical cancer burden. Human papillomavirus (HPV) testing is increasingly recognized to be the preferable primary screening approach if affordable due to superior long‐term reassurance when negative and adaptability to self‐sampling. Visual inspection with acetic acid (VIA) is an inexpensive but subjective and inaccurate method widely used in resource‐limited settings, either for primary screening or for triage of HPV‐positive individuals. A deep learning (DL)‐based automated visual evaluation (AVE) of cervical images has been developed to help improve the accuracy and reproducibility of VIA as assistive technology. However, like any new clinical technology, rigorous evaluation and proof of clinical effectiveness are required before AVE is implemented widely. In the current article, we outline essential clinical and technical considerations involved in building a validated DL‐based AVE tool for broad use as a clinical test. John Wiley & Sons, Inc. 2021-12-06 2022-03-01 /pmc/articles/PMC8732320/ /pubmed/34800038 http://dx.doi.org/10.1002/ijc.33879 Text en Published 2021. This article is a U.S. Government work and is in the public domain in the USA. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Special Report
Desai, Kanan T.
Befano, Brian
Xue, Zhiyun
Kelly, Helen
Campos, Nicole G.
Egemen, Didem
Gage, Julia C.
Rodriguez, Ana‐Cecilia
Sahasrabuddhe, Vikrant
Levitz, David
Pearlman, Paul
Jeronimo, Jose
Antani, Sameer
Schiffman, Mark
de Sanjosé, Silvia
The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing
title The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing
title_full The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing
title_fullStr The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing
title_full_unstemmed The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing
title_short The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing
title_sort development of “automated visual evaluation” for cervical cancer screening: the promise and challenges in adapting deep‐learning for clinical testing
topic Special Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8732320/
https://www.ncbi.nlm.nih.gov/pubmed/34800038
http://dx.doi.org/10.1002/ijc.33879
work_keys_str_mv AT desaikanant thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT befanobrian thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT xuezhiyun thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT kellyhelen thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT camposnicoleg thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT egemendidem thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT gagejuliac thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT rodriguezanacecilia thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT sahasrabuddhevikrant thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT levitzdavid thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT pearlmanpaul thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT jeronimojose thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT antanisameer thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT schiffmanmark thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT desanjosesilvia thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT desaikanant developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT befanobrian developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT xuezhiyun developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT kellyhelen developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT camposnicoleg developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT egemendidem developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT gagejuliac developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT rodriguezanacecilia developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT sahasrabuddhevikrant developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT levitzdavid developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT pearlmanpaul developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT jeronimojose developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT antanisameer developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT schiffmanmark developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting
AT desanjosesilvia developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting