Cargando…
The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing
There is limited access to effective cervical cancer screening programs in many resource‐limited settings, resulting in continued high cervical cancer burden. Human papillomavirus (HPV) testing is increasingly recognized to be the preferable primary screening approach if affordable due to superior l...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8732320/ https://www.ncbi.nlm.nih.gov/pubmed/34800038 http://dx.doi.org/10.1002/ijc.33879 |
_version_ | 1784627562586046464 |
---|---|
author | Desai, Kanan T. Befano, Brian Xue, Zhiyun Kelly, Helen Campos, Nicole G. Egemen, Didem Gage, Julia C. Rodriguez, Ana‐Cecilia Sahasrabuddhe, Vikrant Levitz, David Pearlman, Paul Jeronimo, Jose Antani, Sameer Schiffman, Mark de Sanjosé, Silvia |
author_facet | Desai, Kanan T. Befano, Brian Xue, Zhiyun Kelly, Helen Campos, Nicole G. Egemen, Didem Gage, Julia C. Rodriguez, Ana‐Cecilia Sahasrabuddhe, Vikrant Levitz, David Pearlman, Paul Jeronimo, Jose Antani, Sameer Schiffman, Mark de Sanjosé, Silvia |
author_sort | Desai, Kanan T. |
collection | PubMed |
description | There is limited access to effective cervical cancer screening programs in many resource‐limited settings, resulting in continued high cervical cancer burden. Human papillomavirus (HPV) testing is increasingly recognized to be the preferable primary screening approach if affordable due to superior long‐term reassurance when negative and adaptability to self‐sampling. Visual inspection with acetic acid (VIA) is an inexpensive but subjective and inaccurate method widely used in resource‐limited settings, either for primary screening or for triage of HPV‐positive individuals. A deep learning (DL)‐based automated visual evaluation (AVE) of cervical images has been developed to help improve the accuracy and reproducibility of VIA as assistive technology. However, like any new clinical technology, rigorous evaluation and proof of clinical effectiveness are required before AVE is implemented widely. In the current article, we outline essential clinical and technical considerations involved in building a validated DL‐based AVE tool for broad use as a clinical test. |
format | Online Article Text |
id | pubmed-8732320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87323202022-10-14 The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing Desai, Kanan T. Befano, Brian Xue, Zhiyun Kelly, Helen Campos, Nicole G. Egemen, Didem Gage, Julia C. Rodriguez, Ana‐Cecilia Sahasrabuddhe, Vikrant Levitz, David Pearlman, Paul Jeronimo, Jose Antani, Sameer Schiffman, Mark de Sanjosé, Silvia Int J Cancer Special Report There is limited access to effective cervical cancer screening programs in many resource‐limited settings, resulting in continued high cervical cancer burden. Human papillomavirus (HPV) testing is increasingly recognized to be the preferable primary screening approach if affordable due to superior long‐term reassurance when negative and adaptability to self‐sampling. Visual inspection with acetic acid (VIA) is an inexpensive but subjective and inaccurate method widely used in resource‐limited settings, either for primary screening or for triage of HPV‐positive individuals. A deep learning (DL)‐based automated visual evaluation (AVE) of cervical images has been developed to help improve the accuracy and reproducibility of VIA as assistive technology. However, like any new clinical technology, rigorous evaluation and proof of clinical effectiveness are required before AVE is implemented widely. In the current article, we outline essential clinical and technical considerations involved in building a validated DL‐based AVE tool for broad use as a clinical test. John Wiley & Sons, Inc. 2021-12-06 2022-03-01 /pmc/articles/PMC8732320/ /pubmed/34800038 http://dx.doi.org/10.1002/ijc.33879 Text en Published 2021. This article is a U.S. Government work and is in the public domain in the USA. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Special Report Desai, Kanan T. Befano, Brian Xue, Zhiyun Kelly, Helen Campos, Nicole G. Egemen, Didem Gage, Julia C. Rodriguez, Ana‐Cecilia Sahasrabuddhe, Vikrant Levitz, David Pearlman, Paul Jeronimo, Jose Antani, Sameer Schiffman, Mark de Sanjosé, Silvia The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing |
title | The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing |
title_full | The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing |
title_fullStr | The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing |
title_full_unstemmed | The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing |
title_short | The development of “automated visual evaluation” for cervical cancer screening: The promise and challenges in adapting deep‐learning for clinical testing |
title_sort | development of “automated visual evaluation” for cervical cancer screening: the promise and challenges in adapting deep‐learning for clinical testing |
topic | Special Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8732320/ https://www.ncbi.nlm.nih.gov/pubmed/34800038 http://dx.doi.org/10.1002/ijc.33879 |
work_keys_str_mv | AT desaikanant thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT befanobrian thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT xuezhiyun thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT kellyhelen thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT camposnicoleg thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT egemendidem thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT gagejuliac thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT rodriguezanacecilia thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT sahasrabuddhevikrant thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT levitzdavid thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT pearlmanpaul thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT jeronimojose thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT antanisameer thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT schiffmanmark thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT desanjosesilvia thedevelopmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT desaikanant developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT befanobrian developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT xuezhiyun developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT kellyhelen developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT camposnicoleg developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT egemendidem developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT gagejuliac developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT rodriguezanacecilia developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT sahasrabuddhevikrant developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT levitzdavid developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT pearlmanpaul developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT jeronimojose developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT antanisameer developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT schiffmanmark developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting AT desanjosesilvia developmentofautomatedvisualevaluationforcervicalcancerscreeningthepromiseandchallengesinadaptingdeeplearningforclinicaltesting |