Cargando…
Predicting Future Service Use in Dutch Mental Healthcare: A Machine Learning Approach
A mental healthcare system in which the scarce resources are equitably and efficiently allocated, benefits from a predictive model about expected service use. The skewness in service use is a challenge for such models. In this study, we applied a machine learning approach to forecast expected servic...
Autores principales: | van Mens, Kasper, Kwakernaak, Sascha, Janssen, Richard, Cahn, Wiepke, Lokkerbol, Joran, Tiemens, Bea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8732820/ https://www.ncbi.nlm.nih.gov/pubmed/34463857 http://dx.doi.org/10.1007/s10488-021-01150-6 |
Ejemplares similares
-
Predicting Undesired Treatment Outcomes With Machine Learning in Mental Health Care: Multisite Study
por: Van Mens, Kasper, et al.
Publicado: (2023) -
A Cost-Effectiveness Analysis to Evaluate a System Change in Mental Healthcare in the Netherlands for Patients with Depression or Anxiety
por: van Mens, Kasper, et al.
Publicado: (2017) -
Applying machine learning on health record data from general practitioners to predict suicidality
por: van Mens, Kasper, et al.
Publicado: (2020) -
Patients’ and Psychologists’ Preferences for Feedback Reports on Expected Mental Health Treatment Outcomes: A Discrete-Choice Experiment
por: Hilhorst, Loes, et al.
Publicado: (2022) -
Measuring personal recovery in a low-intensity community mental healthcare setting: validation of the Dutch version of the individual recovery outcomes counter (I.ROC)
por: Beckers, Thijs, et al.
Publicado: (2022)