Cargando…
Sheffer operation in relational systems
The concept of a Sheffer operation known for Boolean algebras and orthomodular lattices is extended to arbitrary directed relational systems with involution. It is proved that to every such relational system, there can be assigned a Sheffer groupoid and also, conversely, every Sheffer groupoid induc...
Autores principales: | Chajda, Ivan, Länger, Helmut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8732903/ https://www.ncbi.nlm.nih.gov/pubmed/35058735 http://dx.doi.org/10.1007/s00500-021-06466-x |
Ejemplares similares
-
Operations and structures derived from non-associative MV-algebras
por: Chajda, Ivan, et al.
Publicado: (2018) -
Filters and congruences in sectionally pseudocomplemented lattices and posets
por: Chajda, Ivan, et al.
Publicado: (2021) -
Consistent posets
por: Chajda, Ivan, et al.
Publicado: (2021) -
Ideals and their complements in commutative semirings
por: Chajda, Ivan, et al.
Publicado: (2018) -
When does a generalized Boolean quasiring become a Boolean ring?
por: Chajda, Ivan, et al.
Publicado: (2017)