Cargando…
Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning
HER2-positive breast cancer is a highly heterogeneous tumor, and about 30% of patients still suffer from recurrence and metastasis after trastuzumab targeted therapy. Predicting individual prognosis is of great significance for the further development of precise therapy. With the continuous developm...
Autores principales: | Yang, Jialiang, Ju, Jie, Guo, Lei, Ji, Binbin, Shi, Shufang, Yang, Zixuan, Gao, Songlin, Yuan, Xu, Tian, Geng, Liang, Yuebin, Yuan, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733169/ https://www.ncbi.nlm.nih.gov/pubmed/35035786 http://dx.doi.org/10.1016/j.csbj.2021.12.028 |
Ejemplares similares
-
Evaluating the Microsatellite Instability of Colorectal Cancer Based on Multimodal Deep Learning Integrating Histopathological and Molecular Data
por: Qiu, Wenjing, et al.
Publicado: (2022) -
DeepLRHE: A Deep Convolutional Neural Network Framework to Evaluate the Risk of Lung Cancer Recurrence and Metastasis From Histopathology Images
por: Wu, Zhijun, et al.
Publicado: (2020) -
Identification and Validation of Efficacy of Immunological Therapy for Lung Cancer From Histopathological Images Based on Deep Learning
por: Yang, Yachao, et al.
Publicado: (2021) -
Bacterial biomarkers capable of identifying recurrence or metastasis carry disease severity information for lung cancer
por: Yuan, Xuelian, et al.
Publicado: (2022) -
Clinicopathologic characteristics and prognostic significance of HER2-low expression in patients with early breast cancer: A systematic review and meta-analysis
por: Wei, Tong, et al.
Publicado: (2023)