Cargando…

Comparison of Clinical Laboratory Standards Institute (CLSI) Microdilution Method and VITEK 2 Automated Antifungal Susceptibility System for the Determination of Antifungal Susceptibility of Candida Species

Introduction Changes in the epidemiology of Candida infections, increasing resistance, and advances in treatment have increased the need to perform antifungal susceptibility testing in clinical laboratories. Standardized reference, the microbroth dilution method, and various commercial antifungal su...

Descripción completa

Detalles Bibliográficos
Autores principales: Dalyan Cilo, Burcu, Ener, Beyza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733416/
https://www.ncbi.nlm.nih.gov/pubmed/35004039
http://dx.doi.org/10.7759/cureus.20220
_version_ 1784627800926322688
author Dalyan Cilo, Burcu
Ener, Beyza
author_facet Dalyan Cilo, Burcu
Ener, Beyza
author_sort Dalyan Cilo, Burcu
collection PubMed
description Introduction Changes in the epidemiology of Candida infections, increasing resistance, and advances in treatment have increased the need to perform antifungal susceptibility testing in clinical laboratories. Standardized reference, the microbroth dilution method, and various commercial antifungal susceptibility test systems are used to determine antifungal susceptibility. This study aims to determine and compare the antifungal susceptibility of various Candida species isolated from blood cultures in our laboratory with the CLSI M27 microdilution reference method and VITEK 2 automated system (bioMérieux, Marcy-l'Étoile, France). Methods The antifungal susceptibility of a total of 140 Candida strains to fluconazole, voriconazole, and amphotericin B, and a total of 92 strains to anidulafungin was tested with the CLSI M27 method and the VITEK 2 automated system. For fluconazole, voriconazole, and amphotericin B, essential and categorical agreement percentages were calculated between the two methods. Because there is no anidulafungin in the VITEK 2 system, anidulafungin results obtained with CLSI were compared with micafungin only in terms of categorical agreement. In the category comparison, CLSI clinical breakpoints were used; the epidemiological cut-off values were used when they were not available. Very major error, major error, and minor error rates were calculated. Results In general, the minimum inhibitory concentration (MIC) values obtained with VITEK 2 for azole group drugs were found to be one-fold higher than the CLSI MICs read at the 24th hour. While the essential agreement between the two methods was >90% for amphotericin B and voriconazole, it remained at 85% for fluconazole. Overall, the best categorical agreement was obtained with amphotericin B (99.3%), and the least categorical agreement was obtained with voriconazole (85.7%). A very major error was seen with amphotericin B (0.7%) and fluconazole (0.7%) in one C. parapsilosis strain each. No resistance was detected with VITEK 2 in one C. glabrata strain found to be resistant to fluconazole by the reference method. Major and minor error rates were higher for azole drugs than amphotericin B and anidulafungin/micafungin. Conclusion The VITEK 2 system is a fast and highly applicable system, and with these features, it is advantageous for routine laboratories. In this study, although the error rate was not very high, one fluconazole-resistant C. parapsilosis and C. glabrata strain could not be detected with VITEK 2. The increase in data on the antifungal performance of the VITEK 2 system, which is available in many routine laboratories due to its ability to be used for bacteria identification and sensitivity, will contribute to the usability of the system for this purpose. In this study, data that will support the literature information in terms of the antifungal performance of the VITEK 2 system are presented.
format Online
Article
Text
id pubmed-8733416
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cureus
record_format MEDLINE/PubMed
spelling pubmed-87334162022-01-08 Comparison of Clinical Laboratory Standards Institute (CLSI) Microdilution Method and VITEK 2 Automated Antifungal Susceptibility System for the Determination of Antifungal Susceptibility of Candida Species Dalyan Cilo, Burcu Ener, Beyza Cureus Infectious Disease Introduction Changes in the epidemiology of Candida infections, increasing resistance, and advances in treatment have increased the need to perform antifungal susceptibility testing in clinical laboratories. Standardized reference, the microbroth dilution method, and various commercial antifungal susceptibility test systems are used to determine antifungal susceptibility. This study aims to determine and compare the antifungal susceptibility of various Candida species isolated from blood cultures in our laboratory with the CLSI M27 microdilution reference method and VITEK 2 automated system (bioMérieux, Marcy-l'Étoile, France). Methods The antifungal susceptibility of a total of 140 Candida strains to fluconazole, voriconazole, and amphotericin B, and a total of 92 strains to anidulafungin was tested with the CLSI M27 method and the VITEK 2 automated system. For fluconazole, voriconazole, and amphotericin B, essential and categorical agreement percentages were calculated between the two methods. Because there is no anidulafungin in the VITEK 2 system, anidulafungin results obtained with CLSI were compared with micafungin only in terms of categorical agreement. In the category comparison, CLSI clinical breakpoints were used; the epidemiological cut-off values were used when they were not available. Very major error, major error, and minor error rates were calculated. Results In general, the minimum inhibitory concentration (MIC) values obtained with VITEK 2 for azole group drugs were found to be one-fold higher than the CLSI MICs read at the 24th hour. While the essential agreement between the two methods was >90% for amphotericin B and voriconazole, it remained at 85% for fluconazole. Overall, the best categorical agreement was obtained with amphotericin B (99.3%), and the least categorical agreement was obtained with voriconazole (85.7%). A very major error was seen with amphotericin B (0.7%) and fluconazole (0.7%) in one C. parapsilosis strain each. No resistance was detected with VITEK 2 in one C. glabrata strain found to be resistant to fluconazole by the reference method. Major and minor error rates were higher for azole drugs than amphotericin B and anidulafungin/micafungin. Conclusion The VITEK 2 system is a fast and highly applicable system, and with these features, it is advantageous for routine laboratories. In this study, although the error rate was not very high, one fluconazole-resistant C. parapsilosis and C. glabrata strain could not be detected with VITEK 2. The increase in data on the antifungal performance of the VITEK 2 system, which is available in many routine laboratories due to its ability to be used for bacteria identification and sensitivity, will contribute to the usability of the system for this purpose. In this study, data that will support the literature information in terms of the antifungal performance of the VITEK 2 system are presented. Cureus 2021-12-06 /pmc/articles/PMC8733416/ /pubmed/35004039 http://dx.doi.org/10.7759/cureus.20220 Text en Copyright © 2021, Dalyan Cilo et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Infectious Disease
Dalyan Cilo, Burcu
Ener, Beyza
Comparison of Clinical Laboratory Standards Institute (CLSI) Microdilution Method and VITEK 2 Automated Antifungal Susceptibility System for the Determination of Antifungal Susceptibility of Candida Species
title Comparison of Clinical Laboratory Standards Institute (CLSI) Microdilution Method and VITEK 2 Automated Antifungal Susceptibility System for the Determination of Antifungal Susceptibility of Candida Species
title_full Comparison of Clinical Laboratory Standards Institute (CLSI) Microdilution Method and VITEK 2 Automated Antifungal Susceptibility System for the Determination of Antifungal Susceptibility of Candida Species
title_fullStr Comparison of Clinical Laboratory Standards Institute (CLSI) Microdilution Method and VITEK 2 Automated Antifungal Susceptibility System for the Determination of Antifungal Susceptibility of Candida Species
title_full_unstemmed Comparison of Clinical Laboratory Standards Institute (CLSI) Microdilution Method and VITEK 2 Automated Antifungal Susceptibility System for the Determination of Antifungal Susceptibility of Candida Species
title_short Comparison of Clinical Laboratory Standards Institute (CLSI) Microdilution Method and VITEK 2 Automated Antifungal Susceptibility System for the Determination of Antifungal Susceptibility of Candida Species
title_sort comparison of clinical laboratory standards institute (clsi) microdilution method and vitek 2 automated antifungal susceptibility system for the determination of antifungal susceptibility of candida species
topic Infectious Disease
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733416/
https://www.ncbi.nlm.nih.gov/pubmed/35004039
http://dx.doi.org/10.7759/cureus.20220
work_keys_str_mv AT dalyanciloburcu comparisonofclinicallaboratorystandardsinstituteclsimicrodilutionmethodandvitek2automatedantifungalsusceptibilitysystemforthedeterminationofantifungalsusceptibilityofcandidaspecies
AT enerbeyza comparisonofclinicallaboratorystandardsinstituteclsimicrodilutionmethodandvitek2automatedantifungalsusceptibilitysystemforthedeterminationofantifungalsusceptibilityofcandidaspecies