Cargando…

Metabolite discovery through global annotation of untargeted metabolomics data

Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantitate all metabolites, but most LC-MS peaks remain unidentified. Here, we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Li, Lu, Wenyun, Wang, Lin, Xing, Xi, Chen, Ziyang, Teng, Xin, Zeng, Xianfeng, Muscarella, Antonio D., Shen, Yihui, Cowan, Alexis, McReynolds, Melanie R., Kennedy, Brandon J., Lato, Ashley M., Campagna, Shawn R., Singh, Mona, Rabinowitz, Joshua D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733904/
https://www.ncbi.nlm.nih.gov/pubmed/34711973
http://dx.doi.org/10.1038/s41592-021-01303-3
_version_ 1784627900117417984
author Chen, Li
Lu, Wenyun
Wang, Lin
Xing, Xi
Chen, Ziyang
Teng, Xin
Zeng, Xianfeng
Muscarella, Antonio D.
Shen, Yihui
Cowan, Alexis
McReynolds, Melanie R.
Kennedy, Brandon J.
Lato, Ashley M.
Campagna, Shawn R.
Singh, Mona
Rabinowitz, Joshua D.
author_facet Chen, Li
Lu, Wenyun
Wang, Lin
Xing, Xi
Chen, Ziyang
Teng, Xin
Zeng, Xianfeng
Muscarella, Antonio D.
Shen, Yihui
Cowan, Alexis
McReynolds, Melanie R.
Kennedy, Brandon J.
Lato, Ashley M.
Campagna, Shawn R.
Singh, Mona
Rabinowitz, Joshua D.
author_sort Chen, Li
collection PubMed
description Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantitate all metabolites, but most LC-MS peaks remain unidentified. Here, we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times, and (when available) MS/MS fragmentation patterns. Peaks are connected based on mass differences reflecting adducting, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically-informative peak-peak relationships, including for peaks lacking MS/MS spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.
format Online
Article
Text
id pubmed-8733904
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-87339042022-04-28 Metabolite discovery through global annotation of untargeted metabolomics data Chen, Li Lu, Wenyun Wang, Lin Xing, Xi Chen, Ziyang Teng, Xin Zeng, Xianfeng Muscarella, Antonio D. Shen, Yihui Cowan, Alexis McReynolds, Melanie R. Kennedy, Brandon J. Lato, Ashley M. Campagna, Shawn R. Singh, Mona Rabinowitz, Joshua D. Nat Methods Article Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantitate all metabolites, but most LC-MS peaks remain unidentified. Here, we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times, and (when available) MS/MS fragmentation patterns. Peaks are connected based on mass differences reflecting adducting, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically-informative peak-peak relationships, including for peaks lacking MS/MS spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery. 2021-10-28 2021-11 /pmc/articles/PMC8733904/ /pubmed/34711973 http://dx.doi.org/10.1038/s41592-021-01303-3 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
spellingShingle Article
Chen, Li
Lu, Wenyun
Wang, Lin
Xing, Xi
Chen, Ziyang
Teng, Xin
Zeng, Xianfeng
Muscarella, Antonio D.
Shen, Yihui
Cowan, Alexis
McReynolds, Melanie R.
Kennedy, Brandon J.
Lato, Ashley M.
Campagna, Shawn R.
Singh, Mona
Rabinowitz, Joshua D.
Metabolite discovery through global annotation of untargeted metabolomics data
title Metabolite discovery through global annotation of untargeted metabolomics data
title_full Metabolite discovery through global annotation of untargeted metabolomics data
title_fullStr Metabolite discovery through global annotation of untargeted metabolomics data
title_full_unstemmed Metabolite discovery through global annotation of untargeted metabolomics data
title_short Metabolite discovery through global annotation of untargeted metabolomics data
title_sort metabolite discovery through global annotation of untargeted metabolomics data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733904/
https://www.ncbi.nlm.nih.gov/pubmed/34711973
http://dx.doi.org/10.1038/s41592-021-01303-3
work_keys_str_mv AT chenli metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT luwenyun metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT wanglin metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT xingxi metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT chenziyang metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT tengxin metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT zengxianfeng metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT muscarellaantoniod metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT shenyihui metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT cowanalexis metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT mcreynoldsmelanier metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT kennedybrandonj metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT latoashleym metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT campagnashawnr metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT singhmona metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata
AT rabinowitzjoshuad metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata