Cargando…
Metabolite discovery through global annotation of untargeted metabolomics data
Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantitate all metabolites, but most LC-MS peaks remain unidentified. Here, we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach a...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733904/ https://www.ncbi.nlm.nih.gov/pubmed/34711973 http://dx.doi.org/10.1038/s41592-021-01303-3 |
_version_ | 1784627900117417984 |
---|---|
author | Chen, Li Lu, Wenyun Wang, Lin Xing, Xi Chen, Ziyang Teng, Xin Zeng, Xianfeng Muscarella, Antonio D. Shen, Yihui Cowan, Alexis McReynolds, Melanie R. Kennedy, Brandon J. Lato, Ashley M. Campagna, Shawn R. Singh, Mona Rabinowitz, Joshua D. |
author_facet | Chen, Li Lu, Wenyun Wang, Lin Xing, Xi Chen, Ziyang Teng, Xin Zeng, Xianfeng Muscarella, Antonio D. Shen, Yihui Cowan, Alexis McReynolds, Melanie R. Kennedy, Brandon J. Lato, Ashley M. Campagna, Shawn R. Singh, Mona Rabinowitz, Joshua D. |
author_sort | Chen, Li |
collection | PubMed |
description | Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantitate all metabolites, but most LC-MS peaks remain unidentified. Here, we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times, and (when available) MS/MS fragmentation patterns. Peaks are connected based on mass differences reflecting adducting, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically-informative peak-peak relationships, including for peaks lacking MS/MS spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery. |
format | Online Article Text |
id | pubmed-8733904 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-87339042022-04-28 Metabolite discovery through global annotation of untargeted metabolomics data Chen, Li Lu, Wenyun Wang, Lin Xing, Xi Chen, Ziyang Teng, Xin Zeng, Xianfeng Muscarella, Antonio D. Shen, Yihui Cowan, Alexis McReynolds, Melanie R. Kennedy, Brandon J. Lato, Ashley M. Campagna, Shawn R. Singh, Mona Rabinowitz, Joshua D. Nat Methods Article Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantitate all metabolites, but most LC-MS peaks remain unidentified. Here, we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times, and (when available) MS/MS fragmentation patterns. Peaks are connected based on mass differences reflecting adducting, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically-informative peak-peak relationships, including for peaks lacking MS/MS spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery. 2021-10-28 2021-11 /pmc/articles/PMC8733904/ /pubmed/34711973 http://dx.doi.org/10.1038/s41592-021-01303-3 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Chen, Li Lu, Wenyun Wang, Lin Xing, Xi Chen, Ziyang Teng, Xin Zeng, Xianfeng Muscarella, Antonio D. Shen, Yihui Cowan, Alexis McReynolds, Melanie R. Kennedy, Brandon J. Lato, Ashley M. Campagna, Shawn R. Singh, Mona Rabinowitz, Joshua D. Metabolite discovery through global annotation of untargeted metabolomics data |
title | Metabolite discovery through global annotation of untargeted metabolomics data |
title_full | Metabolite discovery through global annotation of untargeted metabolomics data |
title_fullStr | Metabolite discovery through global annotation of untargeted metabolomics data |
title_full_unstemmed | Metabolite discovery through global annotation of untargeted metabolomics data |
title_short | Metabolite discovery through global annotation of untargeted metabolomics data |
title_sort | metabolite discovery through global annotation of untargeted metabolomics data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733904/ https://www.ncbi.nlm.nih.gov/pubmed/34711973 http://dx.doi.org/10.1038/s41592-021-01303-3 |
work_keys_str_mv | AT chenli metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT luwenyun metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT wanglin metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT xingxi metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT chenziyang metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT tengxin metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT zengxianfeng metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT muscarellaantoniod metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT shenyihui metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT cowanalexis metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT mcreynoldsmelanier metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT kennedybrandonj metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT latoashleym metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT campagnashawnr metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT singhmona metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata AT rabinowitzjoshuad metabolitediscoverythroughglobalannotationofuntargetedmetabolomicsdata |