Cargando…

Using photoelectron spectroscopy to measure resonant inelastic X-ray scattering: a computational investigation

Resonant inelastic X-ray scattering (RIXS) has become an important scientific tool. Nonetheless, conventional high-resolution (few hundred meV or less) RIXS measurements, especially in the soft X-ray range, require low-throughput grating spectrometers, which limits measurement accuracy. Here, the pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Higley, Daniel J., Ogasawara, Hirohito, Zohar, Sioan, Dakovski, Georgi L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733969/
https://www.ncbi.nlm.nih.gov/pubmed/34985437
http://dx.doi.org/10.1107/S1600577521011917
Descripción
Sumario:Resonant inelastic X-ray scattering (RIXS) has become an important scientific tool. Nonetheless, conventional high-resolution (few hundred meV or less) RIXS measurements, especially in the soft X-ray range, require low-throughput grating spectrometers, which limits measurement accuracy. Here, the performance of a different method for measuring RIXS, i.e. photoelectron spectrometry for analysis of X-rays (PAX), is computationally investigated. This method transforms the X-ray measurement problem of RIXS to an electron measurement problem, enabling use of high-throughput, compact electron spectrometers. X-rays to be measured are incident on a converter material and the energy distribution of the resultant photoelectrons, the PAX spectrum, is measured with an electron spectrometer. A deconvolution algorithm for analysis of such PAX data is proposed. It is shown that the deconvolution algorithm works well on data recorded with ∼0.5 eV resolution. Additional simulations show the potential of PAX for estimation of RIXS features with smaller widths. For simulations using the 3d levels of Ag as a converter material, and with 10(5) simulated detected electrons, it is estimated that features with a few hundred meV width can be accurately estimated in a model RIXS spectrum. For simulations using a sharp Fermi edge to encode RIXS spectra, it is estimated that one can accurately distinguish 100 meV FWHM peaks separated by 45 meV with 10(5) simulated detected electrons that were photoemitted from within 0.4 eV of the Fermi level.