Cargando…
Machine learning denoising of high-resolution X-ray nanotomography data
High-resolution X-ray nanotomography is a quantitative tool for investigating specimens from a wide range of research areas. However, the quality of the reconstructed tomogram is often obscured by noise and therefore not suitable for automatic segmentation. Filtering methods are often required for...
Autores principales: | Flenner, Silja, Bruns, Stefan, Longo, Elena, Parnell, Andrew J., Stockhausen, Kilian E., Müller, Martin, Greving, Imke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733986/ https://www.ncbi.nlm.nih.gov/pubmed/34985440 http://dx.doi.org/10.1107/S1600577521011139 |
Ejemplares similares
-
Pushing the temporal resolution in absorption and Zernike phase contrast nanotomography: enabling fast in situ experiments
por: Flenner, Silja, et al.
Publicado: (2020) -
Hard X-ray full-field nanoimaging using a direct photon-counting detector
por: Flenner, Silja, et al.
Publicado: (2023) -
Environmental control for X-ray nanotomography
por: Holler, Mirko, et al.
Publicado: (2022) -
Development
of a Bioreactor-Coupled Flow-Cell Setup
for 3D In Situ Nanotomography of Mg Alloy Biodegradation
por: Reimers, Jan, et al.
Publicado: (2023) -
Ab initio nonrigid X-ray nanotomography
por: Odstrcil, Michal, et al.
Publicado: (2019)