Cargando…
Prediction-Driven Decision Support for Patients With Mild Stroke: A Model Based on Machine Learning Algorithms
Background and Purpose: Treatment for mild stroke remains an open question. We aim to develop a decision support tool based on machine learning (ML) algorithms, called DAMS (Disability After Mild Stroke), to identify mild stroke patients who would be at high risk of post-stroke disability (PSD) if t...
Autores principales: | Lin, Xinping, Lin, Shiteng, Cui, XiaoLi, Zou, Daizun, Jiang, FuPing, Zhou, JunShan, Chen, NiHong, Zhao, Zhihong, Zhang, Juan, Zou, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733999/ https://www.ncbi.nlm.nih.gov/pubmed/35002923 http://dx.doi.org/10.3389/fneur.2021.761092 |
Ejemplares similares
-
Machine learning to predict futile recanalization of large vessel occlusion before and after endovascular thrombectomy
por: Lin, Xinping, et al.
Publicado: (2022) -
Dynamic Prediction of Mechanical Thrombectomy Outcome for Acute Ischemic Stroke Patients Using Machine Learning
por: Hu, Yixing, et al.
Publicado: (2022) -
A visualized nomogram to online predict futile recanalization after endovascular thrombectomy in basilar artery occlusion stroke
por: Lin, ShiTeng, et al.
Publicado: (2022) -
A Dynamic Nomogram to Identify Patients at High Risk of Poor Outcome in Stroke Patients with Chronic Kidney Disease
por: Wang, Fusang, et al.
Publicado: (2022) -
Dual Antiplatelet Therapy in Patients With Minor Stroke Receiving Intravenous Thrombolysis
por: Xu, Zhaohan, et al.
Publicado: (2022)