Cargando…
Cross-sectional study to predict subnational levels of health workers’ knowledge about severe malaria treatment in Kenya
OBJECTIVES: This study applied a Bayesian hierarchical ecological spatial model beyond predictor analysis to test for the best fitting spatial effects model to predict subnational levels of health workers’ knowledge of severe malaria treatment policy, artesunate dosing, and preparation. SETTING: Cou...
Autores principales: | Machini, Beatrice, Achia, Thomas NO, Chesang, Jacqueline, Amboko, Beatrice, Mwaniki, Paul, Kipruto, Hillary |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734019/ https://www.ncbi.nlm.nih.gov/pubmed/34987048 http://dx.doi.org/10.1136/bmjopen-2021-058511 |
Ejemplares similares
-
Factors associated with hospital length of stay in patients admitted with suspected malaria in Kenya: secondary analysis of a cross-sectional survey
por: Machini, Beatrice, et al.
Publicado: (2022) -
Predictors of health workers’ knowledge about artesunate-based severe malaria treatment recommendations in government and faith-based hospitals in Kenya
por: Machini, Beatrice, et al.
Publicado: (2020) -
Trends in health workers’ compliance with outpatient malaria case-management guidelines across malaria epidemiological zones in Kenya, 2010–2016
por: Amboko, Beatrice, et al.
Publicado: (2020) -
Factors influencing health workers’ compliance with outpatient malaria ‘test and treat’ guidelines during the plateauing performance phase in Kenya, 2014–2016
por: Amboko, Beatrice, et al.
Publicado: (2022) -
Determinants of improvement trends in health workers’ compliance with outpatient malaria case-management guidelines at health facilities with available “test and treat” commodities in Kenya
por: Amboko, Beatrice, et al.
Publicado: (2021)