Cargando…
DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning
BACKGROUND: A limitation of traditional differential expression analysis on small datasets involves the possibility of false positives and false negatives due to sample variation. Considering the recent advances in deep learning (DL) based models, we wanted to expand the state-of-the-art in disease...
Autores principales: | Kakati, Tulika, Bhattacharyya, Dhruba K., Kalita, Jugal K., Norden-Krichmar, Trina M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734099/ https://www.ncbi.nlm.nih.gov/pubmed/34991439 http://dx.doi.org/10.1186/s12859-021-04527-4 |
Ejemplares similares
-
Disease biomarker identification from gene network modules for metastasized breast cancer
por: Sharma, Pooja, et al.
Publicado: (2017) -
Reconstruction of gene co-expression network from microarray data using local expression patterns
por: Roy, Swarup, et al.
Publicado: (2014) -
Identification of Potential Biomarkers Using Integrative Approach: A Case Study of ESCC
por: Saikia, Manaswita, et al.
Publicado: (2022) -
DDoS attacks: evolution, detection, prevention, reaction, and tolerance
por: Bhattacharyya, Dhruba Kumar, et al.
Publicado: (2016) -
A-Lister: a tool for analysis of differentially expressed omics entities across multiple pairwise comparisons
por: Listopad, Stanislav A., et al.
Publicado: (2019)